
The Discrete Fourier Transform*

Francis J. Narcowich

October 4, 2005

1 Motivation

We want to numerically approximate coefficients in a Fourier series. The first
step is to see how the trapezoidal rule applies when numerically computing
the integral (2π)−1

∫ 2π
0 F (t)dt, where F (t) is a continuous, 2π-periodic func-

tion. Applying the trapezoidal rule with the stepsize taken to be h = 2π/n
for some integer n ≥ 1 results in

(2π)−1
∫ 2π

0
F (t)dt ≈ 1

n

n−1∑
j=0

Yj ,

where Yj := F (hj) = F (2πj/n), j = 1 . . . n − 1. We remark that we made
use of Yn = F (2π) = F (0) = Y0 in employing the trapezoidal rule to arrive
at the right hand side of the equation above. Recall that the coefficients in
a Fourier series expansion for a continuous, 2π-periodic function f(t) have
the form

ck =
1

2π

∫ 2π

0
f(t) exp(−ikt)dt.

We can apply the version of the trapezoidal rule derived above to approx-
imately calculate the ck’s, since f(t) exp(−ikt) is 2π-periodic. Doing so
yields

ck ≈
1

n

n−1∑
j=0

f(2πj/n) exp(−2πijk/n) =
1

n

n−1∑
j=0

yjw
jk,

where yj = f(2πj/n) and w = exp(2πi/n). If we replace k by k + n, the
right hand side of the last equation is unchanged, for wn = exp(−2πi) = 1.

*These notes are based on [1, Chapter 3].

1



Consequently, only the approximations to ck for k = 0 . . . n − 1 need be
calculated. Given these approximations, however, one may recover yj , j =
0 . . . n− 1. To see this, let

ŷk =
n−1∑
j=0

yjw
jk,

so that ck ≈ ŷk/n. Multiply both sides by wk` and sum over k:

n−1∑
k=0

ŷkw
k` =

n−1∑
j=0

yj

n−1∑
k=0

w(`−j)k.

The sum over k on the right can be evaluated via the algebraic identity

n−1∑
k=0

zk =


zn − 1

z − 1
if z 6= 1

n if z = 1.

Recalling that wn = 1, setting z = wj−` above, and noting that wj−` 6= 1
unless j = `, one gets

n−1∑
k=0

w(`−j)k =

{
0 if j 6= `
n if j = `.

Consequently, we find that

1

n

n−1∑
k=0

ŷkw
k` = y` .

Thus the y’s can be calculated if we know the c’s or ŷ’s .

2 Definition

Let Sn be the set of periodic sequences of complex numbers with period
n. The set Sn forms a complex vector space under the operations of entry-
by-entry addition and entry-by-entry multiplication by a scalar. Let y =
{yj}∞j=−∞ ∈ Sn , so that yj+n = yj for all j. We can associate to each y a
new sequence ŷ via

ŷk =
n−1∑
j=0

yjw
jk.

2



This is the same formula that we used to find ŷk in §1; the only differences
are that the yj ’s are do not necessarily come from a continuous function,
and that the index k above is not resricted to {0, . . . , n− 1}. The sequence
ŷ is periodic with period n. To see this, note that

ŷk+n =
n−1∑
j=0

yjw
j(k+n) =

n−1∑
j=0

yjw
jkwnj

=

n−1∑
j=0

yjw
jk [wn = e−(2πi/n)n = 1]

= ŷk

Put another way, ŷ ∈ Sn. The mapping y ∈ Sn 7→ ŷ ∈ Sn defines the
discrete Fourier transform. We will write ŷ = F [y]. In addition, the formula
derived in §1 giving yj ’s in terms of ŷk’s certainly applies here as well. Thus,
after changing the “dummy” indices, one gets this formula for yj ’s in terms
of ŷk’s:

yj =
1

n

n−1∑
k=0

ŷkw
jk .

This is the inversion formula for the DFT. We denote the inverse correspon-
dence ŷ ∈ Sn 7→ y ∈ Sn by y = F−1[ŷ].

Both F and F−1 are linear transformations from Sn to itself. Here are
some additional properties that you can verify as exercises.

1. Shifts. If z is the periodic sequence formed from y ∈ Sn via zj = yj+1 ,
then F [z]k = wkF [y]k .

2. Convolutions. If y ∈ Sn and z ∈ Sn, then the sequence defined by
[y ∗ z]j :=

∑n−1
m=0 ymzj−m is also in Sn. The sequence y ∗ z is called the

convolution of y and z.

3. The Convolution Theorem: F [y ∗ z]k = F [y]kF [z]k.

3 An application

Consider the differential equation

u′′ + au′ + bu = f(t),

where f is a continuous, 2π-periodic function of t. There is a well-known
analytical method for finding the unique periodic solution to this equation

3



(cf. Boyce & DiPrima, fifth edition, §3.7.2—forced vibrations), provided f
is known for all t. On the other hand, if we only know f at the points
tj = jh, where again h = 2π/n for some integer n ≥ 1, this method is no
longer applicable.

Instead of directly trying to work with the differential equation itself, we
will work with a discretized version of it. There a many ways of discretizing;
the one that we will use here amounts to making these replacements:

u′(t) −→ u(t)− u(t− h)

h
,

u′′(t) −→ u(t+ h) + u(t− h)− 2u(t)

h2
.

Replacing u′ and u′′ in the differential equation and setting t = 2πj/n, we
get the following difference equation for the sequence uj = u(2πj/n):

uj+1 + αuj + βuj−1 = h2fj ,

where fj = f(2πj/n), α = bh2 + ah− 2, and β = 1− ah.
Let u ∈ Sn be a solution to the difference equation derived above, and

let û = F [u]. In addition, let f̂ = F [f ]. From the inversion formula for the
DFT, we have

uj =
1

n

n−1∑
k=0

ûkw
jk and fj =

1

n

n−1∑
k=0

f̂kw
jk.

Inserting these in the difference equation then yields, after multiplying by
n,

n−1∑
k=0

ûkw
k(j+1) + α

n−1∑
k=0

ûkw
jk + β

n−1∑
k=0

ûkw
k(j−1) =

n−1∑
k=0

h2f̂kw
jk.

Combining terms and doing an algebraic manipulation then results in this:

n−1∑
k=0

(wk + α+ βwk)ûkw
jk =

n−1∑
k=0

h2f̂kw
jk.

Taking the inverse DFT of both sides and dividing by wj + α+ βwj , which
we assume is never 0, we find that

ûk = h2(wk + α+ βwk)−1f̂k .

Thus we have found the DFT of u. Inverting this then recovers u itself. In
the next section we will discuss methods for fast computation of the DFT
and its inverse.

4



4 The Fast Fourier Transform

Let us consider the DFT of a periodic sequence y with period n = 2N . The
ŷk’s are calculated via

ŷk =

2N−1∑
j=0

yjw
jk.

Splitting the sum above into a sum over even and odd integers yields

ŷk =

N−1∑
j=0

y2jw
2jk +

N−1∑
j=0

y2j+1w
(2j+1)k

=
N−1∑
j=0

y2jW̄
jk + wk

N−1∑
j=0

y2j+1W̄
jk

 ,

where W := exp(2πi/N) = w2. We may rewrite this in terms of DFT’s with
n→ N :

ŷk = F [{y0 , y2 , · · · , y2N−2}]k + wkF [{y1 , y3 , · · · , y2N−1}]k.

A further savings is possible. In the last equation, let k → k + N and use
these facts: (1) F [yeven] and F [yodd] both have period N . (2) wk+N =
wk exp(−πi) = −wk. The result is that for 0 ≤ k ≤ N − 1 we have{

ŷk = F [{y0 , y2 , · · · , y2N−2}]k + wkF [{y1 , y3 , · · · , y2N−1}]k
ŷk+N = F [{y0 , y2 , · · · , y2N−2}]k − wkF [{y1 , y3 , · · · , y2N−1}]k .

Similar formulas can be derived for the inverse DFT; they are:{
yk = 1

2

{
F−1[{ŷ0 , ŷ2 , · · · , ŷ2N−2}]k + wkF−1[{ŷ1 , ŷ3 , · · · , ŷ2N−1}]k

}
yk+N = 1

2

{
F−1[{ŷ0 , ŷ2 , · · · , ŷ2N−2}]k − wkF−1[{ŷ1 , ŷ3 , · · · , ŷ2N−1}]k

}
.

(The factor of 1
2 appears because the inversion formula has a “1/n” in it.)

What is the computational “cost” of using the formulas above versus
ordinary matrix methods, where there are 4n2 real multiplications used in
the computation? Set n = 2L and let KL be the number of real multipli-
cations required to compute F [y] by the method above. From the formulas
derived above, one sees that to compute F [y], one needs to compute F [yeven]
and F [yodd]. This takes 2KL−1 real multiplications. In addition, one must
multiply wk and F [yodd]k, for k = 0, . . . , 2L−1 − 1, which requires 4× 2L−1

real multiplications. The result is that KL is related to KL−1 via

KL = 2KL−1 + 2L+1

5



When L = 0, n = 20 = 1 and no multiplications are required; thus, K0 = 0.
Inserting L = 1 in the last equation, we find that K1 = 1 × 22. Similarly,
setting L = 2 then yields K2 = 2×23. Similarly, one finds that K3 = 3×24,
K4 = 4× 25, and so on. The general formula is KL = L× 2L+1 = 2L× 2L.
Again setting n = 2L and noting that L = log2 n, we see that the number
of real multiplications required is 2n log2 n.

To get an idea of how much faster than matrix multiplication this method
is, suppose that we want to take the DFT of data with n = 212 = 4, 096
points. The conventional method requires 226 ≈ 7×107 real multiplications.
Using the FFT method to get the DFT requires 2 × 212 × 12 ≈ 105 real
multiplications, making the FFT roughly 700 times as fast.

We remark that similar algorithms can be obtained for n = N1N2 · · ·Nm,
although the fastest one is obtained in the case discussed above. For a
discussion of this and related topics, one should consult the references below.

Previous: Pointwise convergence of Fourier series
Next: Splines and finite element spaces

References

[1] A. Boggess and F. J. Narcowich, A First Course in Wavelets with
Fourier Analysis, 2nd ed., John Wiley & Sons, Hoboken, N.J., 2009.

[2] W. L. Briggs, and Van Emden Henson, The DFT: An Owner’s Manual
for the Discrete Fourier Transform, SIAM, Philadelphia, 1995

[3] J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Computa-
tion of Complex Fourier Series,” Math. Comp. 19 (1965), 297-301.

[4] Folland, G. B., Fourier analysis and its applications, Wadsworth &
Brooks/Cole, Pacific Grove, CA, 1992.

[5] Marchuk, G. I., Methods of numerical mathematics, Springer-Verlag,
Berlin, 1975.

[6] Ralston, A. and Rabinowitz, P. A first course in numerical analysis,
McGraw-Hill, New York, 1978.

6

http://people.tamu.edu/~f-narcowich/m641/m641_notes/fs_convergence.html
http://pe0ple.tamu.edu/~f-narcowich/m641/m641_notes/splines2014.pdf

	Motivation
	Definition
	An application
	The Fast Fourier Transform

