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1 The graph of an operator

Let H be a separable Hilbert space. If L : H → H is a linear operator
defined on a domain DL ⊆ H, then the graph of L is defined by

GL := {(u, Lu) ∈ H ×H : u ∈ DL}.

We can turn H×H into a vector space by defining addition and multiplica-
tion by a scalar via (u1, u2) + (v1, v2) := (u1 + u2, v1 + v2) and c(u1, u2) :=
(cu,cu2). In addition, we make H × H into an inner product space H by
defining the inner product this way:

〈(u1, u2), (v1, v2)〉H = 〈u1, v1〉H + 〈u2, v2〉H.

It is very easy to show that H is a Hilbert space. We leave the verification
to the reader.

It’s notationally convenient to represent a vector in H as a column

u =

(
u1
u2

)
.

The vector operations in H are equivalent to those for column vectors, except
of course that the entries in the column are in H. In this notation, we have

GL = {u ∈ H : u =
(
u Lu

)T }.
This set is algebraically closed under vector addition and scalar multiplica-
tion; it is thus a subspace of H.

Bounded operators are continuous. While unbounded operators cannot
be continuous, for some unbounded operators there is an important property
that plays a role similar to continuity in a bounded operator:

Definition 1.1. An operator L is said to be closed if and only if for every
sequence {uk}∞k=1 such that both uk → u and Luk → v, in H, we have
u ∈ DL and v = Lu.
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We can rephrase the definition of a closed operator in terms of its graph.
Recall that a subspace of a Hilbert space is closed if and only if every con-
vergent sequence in the subspace has a limit in that subspace. In particular,
GL will be closed if and only if every sequence {uk} ⊂ GL that converges in
H has its limit in GL. This means that GL is closed if and only if uk → u
and Luk → v, in H, then u ∈ DL and v = Lu. We have thus proved the
following proposition.

Proposition 1.2. The graph GL is a closed subspace of H if and only if
the operator L is closed.

2 Adjoints

2.1 Definition

We start with D∗, which will be the domain of the adjoint of L. Define D∗

to be the set of all v ∈ H such that there exists ṽ ∈ H such that

〈Lu, v〉H = 〈u, ṽ〉H, for all u ∈ DL. (2.1)

The set D∗ is also a subspace of H. Suppose that v1 and v2 are in D∗.
Then we have

〈Lu, c1v1 + c2v2〉H = c̄1〈u, ṽ1 + c̄2〈u, ṽ2〉
= 〈u, c1ṽ1 + c2ṽ2〉H,

so c1v1 + c2v2 ∈ D∗. Hence, D∗ is algebraically closed under addition and
scalar multiplication and is thus a subspace of H.

We now turn to a discussion of the adjoint, L∗. Suppose DL is dense
in H. Then, if v ∈ D∗, we have that, for all u ∈ DL, 〈Lu, v〉H = 〈u, ṽ〉H.
Suppose that there are two vectors ṽ1 and ṽ2 such that 〈u, ṽ1〉H = 〈u, ṽ2〉H.
Subtracting, we see that 〈u, ṽ1 − ṽ2〉H = 0. Since DL is dense in H, taking
limits in the previous equation shows that 〈u, ṽ1 − ṽ2〉H = 0 for all u ∈ H.
Picking u = ṽ1 − ṽ2 then implies that ‖ṽ1 − ṽ2‖H = 0 and that ṽ1 = ṽ2.
Consequently, ṽ is uniquely determined by v and, thus, we may define a map
L∗ : D∗ → H via L∗v = ṽ.

The map L∗ is linear. To prove this, recall that D∗ is a subspace of H.
It follows that, for v1, v2 ∈ D∗, we have that

〈Lu, c1v1 + c2v2〉H = 〈u, L∗(c1v1 + c2v2)〉H

and, in addition, that

〈Lu, c1v1 + c2v2〉H = c̄1〈Lu, v1〉H + c2〈Lu, v2〉H = 〈u, c1L∗v1 + c2L
∗v2〉H.
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Consequently, we see that

L∗(c1v1 + c2v2) = c1L
∗v1 + c2L

∗v2.

It follows that L∗ is a linear operator having domain DL∗ = D∗. We sum-
marize these remarks in the following proposition.

Theorem 2.1. Let L be densely defined and let D∗ be as above. Then there
exists a linear operator L∗, called the adjoint of L, with domain DL∗ = D∗,
for which 〈Lu, v〉H = 〈u, L∗v〉H holds for all u ∈ DL and all v ∈ DL∗.

2.2 Graphs and properties of adjoints

There is an important relation between the graphs GL and GL∗ . We begin
by noting that there is another way of characterizing DL∗ . By definition, a
vector v ∈ DL∗ if and only if there is a ṽ ∈ H such that 〈Lu, v〉H = 〈u, ṽ〉H
holds. We can put this in terms of H:〈

U

(
u
Lu

)
,

(
v
ṽ

)〉
H

= 〈Lu, v〉H − 〈u, ṽ〉H = 0, U :=

(
0 I
−I 0

)
. (2.2)

Conversely, if (2.2) holds, we have that 〈Lu, v〉H = 〈u, ṽ〉H. Since there are

no other conditions on v and ṽ, it follows that all
(
v ṽ

)T
satisfying the

previous equation comprise the orthogonal complement of the space UGL,
[UGL]⊥. Furthermore, we have that ṽ = L∗v, v ∈ DL∗ ; thus these vectors

have the form
(
v L∗v

)T
and so comprise GL∗ . This yields the following

result1

Proposition 2.2. If L is a densely defined operator, then the following hold:
GL∗ = [UGL]⊥, GL∗ is closed, and L∗ is a closed operator.

Proof. We have already proved the first assertion. The set UGL is of course
a subspace of H. Hence, because an orthogonal complement of a subspace
of a Hilbert space is always closed, GL∗ is closed. That L∗ is closed follows
from Proposition 1.2.

So far, we have assumed only that L is densely defined. What happens
if L is also closed? Here is the answer.

Proposition 2.3. If L is a densely defined, closed operator, then L∗ is a
densely defined, closed operator.

1In class I gave another proof, which didn’t use graphs, that L being densely defined
implies that L∗ is closed.
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Proof. We have already shown in Proposition 2.2 that if L is densely defined,
then L∗ is closed.

If L is closed, then, by Proposition 1.2, the graph GL is closed, and so
is UGL. Recall that if V and W are closed subspaces of a Hilbert space,
and if V = W⊥, then we also have W = V ⊥. It follows that GL∗ = [UGL]⊥

implies that G⊥L∗ = UGL. Now, suppose that DL∗ is not dense in H. Then
we can find h ∈ H, h 6= 0, such that h is orthogonal to DL∗ . Hence, we have
that 〈(

h
0

)
,

(
v

L∗v

)〉
H

= 〈h, v〉H = 0,

so
(
h 0

)T ∈ UGL. Since this space is closed, we know that there exists a

u ∈ DL such that
(
Lu −u

)T
=

(
h 0

)T
. Consequently, we see that u = 0

and so h = L0 = 0. But this contradicts the fact that h 6= 0; thus, DL∗ is
dense is H and L∗ is densely defined.

3 Closed Graph Theorem

We are just going to state the closed graph theoem. For a proof, see [1].

Theorem 3.1 (Closed Graph Theorem). Let L be a closed linear operator
whose domain DL = H. Then L is bounded.
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