
Discrete Time Signals & Matlab

A discrete-time signal x is a bi-infinite sequence, {xk}∞k=−∞. The variable
k is an integer and is called the discrete time. An equivalent way to think
about x is that it is a function that assigns to k some real (or complex)
number xk.

The graph of xk vs. k is called a time series. Matlab provides several
ways of plotting time series, or discrete data. The simplest is the stem plot.
We let the discrete signal be

x = ( · · · 0 −1 2 3 −2 0 1 0 · · · ), (1)

where the first non-zero entry corresponds to k = 0 and the last to k = 5.
For values of k larger than 5 or less than 0, xk = 0. To plot xk for k = −2 to
k = 7, which will include some zeros, we use these commands. (See Figure 1.)

x=[0 0 -1 2 3 -2 0 1 0 0];

dtx= -2:7; (discrete time for x)
stem(dtx,x)

−2 0 2 4 6 8
−3

−2

−1

0

1

2

3

4

Figure 1: A stem plot of xk vs. k

1



The convolution of two discrete-time signals x and y is x ∗ y, which is
defined by

(x ∗ y)n :=
∞∑

k=−∞
xn−kyk. (2)

As is the case with the continuous-time convolution, x ∗ y = y ∗ x. The
convolution is of interest in discrete-time signal processing because of its
connection with linear, time-invariant filters. If H is such a filter, than there
is a sequence {hk}∞k=−∞ such that H [x] = h ∗ x; h is called the impulse
response (IR) of the filter H . When the IR h has only a finite number of
non-zero hk’s, we say that H has finite impulse response (FIR). Otherwise,
it has infinite impulse response (IIR).

In practical situations, we will work only with finite sequences, but these
sequences may be arbitrarily large. To compute convolutions of such se-
quences, we need to discuss indexing of sequences. For a finite sequence x we
will let sx be the starting value of k considered. We thus assume that xk = 0
if k < sx. In addition, we let `x be the last value of k we consider; again, we
assume that xk = 0 if k > `x. Also, we will let nx be the length of the stretch
between the starting and last xk’s, so nx = `x − sx + 1. For example, if we
only wish to work with nonzero xk’s in the sequence x defined previously in
(1), then sx = 0, `x = 5, and nx = 6 .

Our goal is to use Matlab’s function conv to compute x ∗ y when x and
y are finite. To do this, we first need to look at what the indexing of the
convolution x ∗ y is. That is, we want to know what sx∗y, `x∗y, and nx∗y
are, given the corresponding quantities for finite x and y. When y is finite,
equation (2) has the form

(x ∗ y)n :=
`y∑

k=sy

xn−kyk =
`y−sy∑
k=0

xn−k−syyk+sy , (3)

where the second equality follows from a change of index. Since 0 ≤ k ≤
`y − sy, the index n − k − sy satisfies

n − sy ≥ n − k − sy ≥ n − `y

If n − `y > `x, all the xn−k−sy = 0, and (x ∗ y)n = 0. Similarly, if n − sy <
sx, we have (x ∗ y)n = 0. In addition, by direct substitution we see that
(x ∗ y)sy+sx = xsxysy and (x ∗ y)`y+`x = x`xy`y . It follows that the starting
index for x∗ y is sx∗y = sx + sy, that the last index is `x∗y = `x + `y, and that

2



the number of terms we need to compute is nx∗y = `x + `y − sx − sy + 1 =
nx − 1 + ny − 1 + 1 = nx + ny − 1. We list these below.

sx∗y = sx + sy

`x∗y = `x + `y

nx∗y = nx + ny − 1


 (4)

Matlab stores a finite sequence in a row or column vector, depending on
the user’s choice. Such vectors are always indexed starting with 1 and going
up to the number of entries in the vector. Let’s look at our earlier example,
where we let x=[0 0 -1 2 3 -2 0 1 0 0]. To access the fourth entry, we
type in x(4). When we hit the ENTER key, we would get ans = 2. Now, as a
sequence, x is a function the discrete time, k. In the entries given above, k
runs from k = −2 through k = 7. For plotting purposes and other reasons,
we define a discrete time vector to carry this information, dtx=-2:7. For
example, to find the discrete time that corresponds to the fourth entry in x,
we type in dtx(4) and hit ENTER to get ans=1.

Let’s use this to finding x ∗ y. Again, take x=[0 0 -1 2 3 -2 0 1 0 0]

and dtx=-2:7. Also, let y=[1 -1 2 4] and dty=8:11. To find the convolu-
tion of these two and plot the result, we use these commands:

x=[0 0 -1 2 3 -2 0 1 0 0];

dtx= -2:7;

y=[1 -1 2 4];

dty=8:11;

z=conv(x,y);

dtz=6:18;

stem(dtz,z)

The result of this is that z=[0 0 -1 3 -1 -5 16 9 -9 2 4 0 0]. Apart
from these entries, which are for discrete times k = 6 through k = 18, the
other entries in z = x ∗ y are all 0. So, for example, z−20 = 0 and z5 = 0. To
include more entries on the plot, say for k = −5 to k = 27, one needs to pad
the row vector z with zeros. There are many ways to do this. Here is one of
them.

dtz=-2:27;

stem(dtz,[zeros(size(-2:5)) z zeros(size(19:27))])

3



Exercises. These exercises require Matlab. A basic introduction may be
found online at http://www.mathworks.com/products/education. Click
on the Matlab and Simulink Tutorials to get started.

1. Do each of the sets of commands listed in the discussion. Print the
resulting plots.

2. Find the convolution of the x and y. Here, xk = 0 for k > 3 and
k < −4, and xk = 1 for −4 ≤ k ≤ 3. For yk, assume that yk = 0
for k > −2 and for k < −8. When −8 ≤ k ≤ −2, yk = k + 2. Find
x ∗ y and determine the discrete time index. Plot the result with stem,
again using the correct time index. Put a title on your plot by using
the command title(’Convolution of x*y’). Print the result.

3. Take t=linspace(0,2*pi,20), x=sin(t). Do the plots stem(t,x),
stem(t,x,’:r’,’fill’), and stem(t,x,’-.sb’,’fill’). Put them
all in one plot with the commands below and print the result.

subplot(1,3,1), stem(t,x)

title(’Default Stem Plot’)

subplot(1,3,2), stem(t,x,’:r’,’fill’)

title(’Filled Stem Plot’)

subplot(1,3,3), stem(t,x,’sk’)

title(’Square Marker Stem Plot’)

4. This exercise illustrates the use of another plotting tool, stairs. Start
with the following commands.

t=linspace(-pi,pi,20); x=sin(t);

stairs(t,x)

Next, change the plot by using a “dash-dot” line instead of a solid one.
We will also change the color to red: stairs(t,x,’-.r’). We will now
combine stairs, stem and plot. Title the plot and print the result.

t=linspace(-pi,pi,20); x=sin(t);

tt=linspace(-pi,pi,600); xx=sin(tt);

stairs(t,x,’-.r’), hold on

stem(t,x,’:sb’,’fill’) (Dotted stems & filled circles)
plot(tt,xx,’k’), hold off

4



5. The stairs plots are well suited to doing plots involving the Haar
scaling function and wavelet. Recall that the Haar scaling function is
defined by

ϕ(x) :=

{
1, if 0 ≤ t < 1,
0, otherwise.

Use stairs to plot f(x) = 3ϕ(x + 1) − 2ϕ(x) + ϕ(x − 1) + ϕ(x − 2)
on the interval −3 ≤ x ≤ 4. On the same interval, plot g(x) = ϕ(2x +
3)−ϕ(2x + 2) + 2ϕ(2x)−ϕ(2x− 3). For g, use a dash-dot pattern (-.)
and make the color red. (Hint: to plot two functions, you will need to
use hold on.)

6. This problem pertains to the Z-transform. Let h be a finite discrete-
time signal. If we let z = eiω, then the Z-transform is

ĥ(ω) =
`h∑

k=sh

hkz
−k.

We want to illustrate how to numerically compute and plot ĥ. For
simplicity, we will work with an h for which sh = −n, ` = n, and
hk = 1/n for −n ≤ k ≤ n. We will do the following.

w=linspace(-pi,pi,600); z=exp(i*w); (Initialize z.)
n=2; h=ones(1,2*n+1)/(2*n+1);

H=z.̂ n.*polyval(h,1./z); (Compute the Z-transform.)
norm(imag(H)) (This should be small; if not, H is wrong.)
plot(w,real(H))

In addition to n = 2, do this for n = 4, and n = 5. Title, and then
print, each plot.

5


