Test II

Instructions: Show all work in your bluebook. Calculators that do not do linear algebra are allowed.

1. (20 pts.) For the matrix A below, find a basis for the row space, a basis for the column space, and a basis for the null space. Also, determine the rank and nullity of A.

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 0 \\ 1 & 2 & 1 & 5 \end{pmatrix}$$

2. (15 pts.) Find the standard matrix representation for the linear transformation $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ that rotates a vector 90° in the clockwise direction and then reflects it about the x_2-axis.

3. (15 pts.) Consider the bases for P_2 defined by

$$F = [x + 1, x - 1] \quad \text{and} \quad G = [1, 2 - x].$$

Find the transition matrix $S_{F \rightarrow G}$ that takes coordinates relative to F into ones relative to G.

4. (15 pts.) Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be linear. If $T((1, 1)^T) = (-1, 2)^T$ and $T((2, -1)^T) = (3, 2)^T$, find $T((4, 1)^T)$.

5. Let $L : P_3 \rightarrow P_3$ be defined by $L(p) = (x + 1)p' - 2p$.

(a) (5 pts.) Show that L is linear.

(b) (10 pts.) Find the kernel and range of L.

(c) (10 pts.) Find the matrix A that represents L relative to E-coordinates, where $E = [x^2, x, 1]$.

(d) (5 pts.) Find the matrix B that represents L relative to H-coordinates, where $H = [1, 1 + x, 1 - x - x^2]$. (You may use your answer to the previous question, You do not need to invert or multiply the matrices involved.)

6. (5 pts.) Let A be an $n \times (n + 1)$ matrix. If the nullity of A is 2, do the columns of A form a basis for \mathbb{R}^n? Why?