## Test I

Instructions: Show all work in your bluebook. You may use a calculator for numerical computations. You may not use a graphing calculator or a calculator that can do symbolics.

1. Consider the function $f(x):=1-x$ defined on $0 \leq x \leq 1$. (Note: here $a=1, \operatorname{not} \pi$.)
(a) ( $\mathbf{1 5} \mathbf{~ p t s . ) ~ F i n d ~ t h e ~ F o u r i e r ~ s i n e ~ s e r i e s ~ f o r ~} f$, and sketch three periods (period $=2$ ) of the function to which it converges pointwise.
(b) (5 pts.) Sketch three periods (period $=2$ ) of the function to which the Fourier cosine series converges pointwise. (Do not compute the coefficients in the series.)
(c) (10 pts.) Is either series uniformly convergent? If so, which? Why? Will either series exhibit the Gibbs' phenomenon? Briefly explain.
2. Let $g(x)=e^{2 x}$ on $-\pi<x<\pi$
(a) (10 pts.) Show that the complex form of the Fourier series for $g$ is

$$
\frac{e^{2 \pi}-e^{-2 \pi}}{2 \pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{2-i n} e^{i n x}
$$

(b) (10 pts.) Sum the series $\sum_{n=-\infty}^{\infty} \frac{1}{4+n^{2}}$ using the series above and Parseval's Theorem.
3. (10 pts.) Establish the Fourier transform property $\mathcal{F}\left[f^{\prime}(x)\right](\lambda)=i \lambda \hat{f}(\lambda)$.
4. Let $a>0$. Consider the rectangular pulse $h(t)=\left\{\begin{array}{cl}1 & -a<t<a \\ 1 / 2 & t= \pm a \\ 0 & |t|>a\end{array}\right.$.
(a) (10 pts.) Find $\widehat{h}(\lambda)$.
(b) (10 pts.) Find the convolution $h * h$.
(c) (5 pts.) Find $\mathcal{F}[h * h](\lambda)$.
5. (15 pts.) Do one of the following.
(a) State and prove the Riemann-Lebesgue Lemma in the case where $f(x)$ is continuously differentiable on the finite interval $[a, b]$.
(b) Sketch the major steps in proof for the pointwise convergence of the Fourier series for a function $f$ that is $2 \pi$-periodic, piecewise continuous, and has a piecewise continuous derivative. You may assume that $f$ is continuous at the point $x$.
6. (Bonus: 10 pts.) Let $g$ be as in problem ??. Estimate the mean error $\left\|g-S_{N}(x)\right\|$, where $S_{N}(x)=\frac{e^{2 \pi}-e^{-2 \pi}}{2 \pi} \sum_{n=-N}^{N} \frac{(-1)^{n}}{2-i n} e^{i n x}$. You may use any information you already obtained in problem ??.

## Fourier Transform Properties

1. $\hat{f}(\lambda)=\mathcal{F}[f](\lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i x \lambda} d x$.
2. $f(x)=\mathcal{F}^{-1}[\hat{f}](x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\lambda) e^{i x \lambda} d \lambda$.
3. $\mathcal{F}\left[x^{n} f(x)\right](\lambda)=i^{n} \hat{f}^{(n)}(\lambda)$.
4. $\mathcal{F}\left[f^{(n)}(x)\right](\lambda)=(i \lambda)^{n} \hat{f}(\lambda)$.
5. $\mathcal{F}[f(x-a)](\lambda)=e^{-i \lambda a} \hat{f}(\lambda)$.
6. $\mathcal{F}[f(b x)](\lambda)=\frac{1}{b} \hat{f}\left(\frac{\lambda}{b}\right)$.
7. $\mathcal{F}[f * g]=\sqrt{2 \pi} \hat{f}(\lambda) \hat{g}(\lambda)$

## Integrals

1. $\int u d v=u v-\int v d u$
2. $\int \frac{d t}{t}=\ln |t|+C$
3. $\int e^{a t} d t=\frac{1}{a} e^{a t}+C$
4. $\int t^{n} e^{a t} d t=\frac{1}{a} t^{n} e^{a t}-\frac{n}{a} \int t^{n-1} e^{a t} d t$
5. $\int e^{a t} \cos (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}(a \cos (b t)+b \sin (b t))+C$
6. $\int e^{a t} \sin (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}(a \sin (b t)-b \cos (b t))+C$
7. $\int t \sin (t) d t=\sin (t)-t \cos (t)+C$
8. $\int t \cos (t) d t=\cos (t)+t \sin (t)+C$
