Test 2

Instructions: Show all work in your bluebook. Cell phones, laptops, calculators that do linear algebra or calculus, and other such devices are not allowed.

1. Define the terms below.

 (a) (10 pts.) Define the term multiresolution analysis. For the Shannon MRA, define the V_j’s and ϕ.

 (b) (5 pts.) Define the term time-invariant filter.

 (c) (5 pts.) Define the fast Fourier transform and briefly state how it is related to the discrete Fourier transform.

2. (20 pts.) Let $h(t) = \begin{cases} 1/5 & 0 \leq t \leq 5, \\ 0 & t < 0 \text{ or } t > 5 \end{cases}$ be the impulse response for $L[f] = h * f$. Find $L[f]$, where $f = \begin{cases} e^{-3t} & t \geq 0, \\ 0 & t < 0. \end{cases}$ Find the system (frequency) response function, $\sqrt{2\pi} \hat{h}$. Is the filter causal? Why or why not? (One or two sentences will suffice.)

3. (20 pts.) Let $y = (\cdots y_0, y_1, \cdots, y_{n-1} \cdots) \in S_n$, where S_n is the space of n-periodic sequences. Show that if the y_j’s are real, then $\hat{y}_{n-k} = \overline{\hat{y}_k}$

4. (20 pts.) The level $j = 2$ Haar MRA approximation coefficients for $f_2 \in V_2$ are $a^2 = [3, 1, -2, 0, -3, 9, -3]$, $k = 0 \ldots 6$; for $k < 0$ or $k > 6$, $a_k^2 = 0$. Decompose f_2 down to level $j = 0$.

5. (20 pts.) Do one of the following.

 (a) For the Haar MRA, define V_j and prove this: $f(x)$ belongs to V_j if and only if $f(2^{-j}x)$ belongs to V_0.

 (b) Suppose that x is an n-periodic sequence – i.e., $x \in S_n$. Show that $\sum_{j=m}^{n-1} x_j = \sum_{j=0}^{n-1} x_j$.

 (c) State and prove the Whittaker-Shannon Sampling Theorem.