APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

January 9, 2020

Applied Analysis Part, 2 hours

Name:			
	Name:		

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. **No** extra credit for doing all four.

Problem 1. Consider $F(x) := \frac{x}{2} + \frac{1}{x}, 1 \le x \le 2$.

- (a) State and prove the Contraction Mapping Theorem.
- (b) Show that $F:[1,2] \to [1,2]$, that it is Lipschitz continuous on [1,2], with Lipschitz constant less than or equal to 1/2.
- (c) Obviously, the fixed point is $\sqrt{2}$. If $x_0 = 2$, estimate the number of iterations needed to come within 0.001 of $\sqrt{2}$.

Problem 2. Let $p \in C^{(2)}[0,1], q \in C[0,1]$ be positive on [0,1]. Consider the operator Lu = -(pu')' + qu, where $\mathcal{D}_L := \{u \in L^2[0,1]] : Lu \in L^2[0,1], \ u(0) = 0 \ \& \ u'(1) = 0\}.$

- (a) Show that L is self adjoint and positive definite.
- (b) Explain why the Green's function g(x, y) exists for this problem.
- (b) Prove that the eigenfunctions of L contain a complete, orthonormal set with respect to $L^2[0,1]$.

Problem 3. Let \mathcal{H} be a Hilbert space, $\mathcal{C}(\mathcal{H})$ the compact operators \mathcal{H} , and $\mathcal{B}(\mathcal{H})$ be the bounded operators on \mathcal{H} .

- (a) Prove that $\mathcal{C}(\mathcal{H})$ is a closed subspace of $\mathcal{B}(\mathcal{H})$.
- (b) Let $\mathcal{H} = L^2[0,1]$. Use the result above to show that a Hilbert-Schmidt operator $Ku(x) = \int_0^1 k(x,y)u(y)dy, k \in L^2([0,1] \times [0,1])$ is compact.

Problem 4. Let \mathcal{S} be Schwartz space and \mathcal{S}' be the space of tempered distributions. The Fourier transform convention used here is $\mathcal{F}[f](\omega) = \widehat{f}(\omega) := \int_{\mathbb{R}} f(t)e^{i\omega t}dt$, $\mathcal{F}^{-1}[\widehat{f}](x) = f(x) = \frac{1}{2\pi}\int_{\mathbb{R}} \widehat{f}(\omega)e^{-i\omega t}d\omega$.

- (a) Sketch a proof: The Fourier transform \mathcal{F} is a continuous linear operator mapping \mathcal{S} into itself.
- (b) Use the previous result to show that $\langle \mathcal{F}[T](x), \phi(x) \rangle := \langle T(x), \mathcal{F}[\phi](x) \rangle$ implies $\mathcal{F}[T] \in \mathcal{S}'$.
- (c) You are **given** that if $T \in \mathcal{S}'$, then $T^{(k)} = (-i\omega)^k \widehat{T}$, where $k = 1, 2, \ldots$ Let T be the tent function $T(x) = 1 |x|, |x| \le 1$, and T(x) = 0 otherwise. Find \widehat{T} . (Hint: What is T''?)

¹Here we are defining $\langle f,g\rangle:=\int_{\mathbb{R}}f(x)g(x)dx$. Note that there is no complex conjugate in this definition of $\langle f,g\rangle$.