Applied Analysis Qualifying Exam
May 22, 2007

Instructions: Do any 7 of the 9 problems in this exam. Show all of your work clearly. Please indicate which 2 of the 9 problems you are skipping.

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem in such a way that it becomes trivial.

1. State and prove one of the following theorems:

 (a) The Weierstrass approximation theorem (sketch of proof suffices).

 (b) The Hilbert space projection (decomposition) theorem.

 (c) The Shannon sampling theorem.

2. Suppose that $f(\theta)$ is 2π-periodic function in $C^{(1)}(\mathbb{R})$, and that f'' is piecewise continuous and 2π-periodic. Let c_k denote the k^{th} (complex) Fourier coefficient for f, and let $f_n(\theta) = \sum_{k=-n}^{n} c_k e^{ik\theta}$ be the n^{th} partial sum of the Fourier series for f, $n \geq 1$.

 (a) For $k \neq 0$, show that the Fourier coefficient c_k satisfies the bound

 $$ |c_k| \leq \frac{1}{2\pi |k|^2} \|f''\|_{L^1[0,2\pi]}.$$

 (b) Show that both of these hold for f. (The constants are independent of f and n.)

 $$ \|f-f_n\|_{L^2[0,2\pi]} \leq C_1 \frac{\|f''\|_{L^1[0,2\pi]}}{\sqrt{n}} \quad \text{and} \quad \|f-f_n\|_{C[0,2\pi]} \leq C_2 \frac{\|f''\|_{L^1[0,2\pi]}}{n}.$$

3. Consider the integral operator $Ku = \int_{a}^{b} k(x, \xi) u(\xi) d\xi$.

 (a) Sketch a proof of this: *If K is a Hilbert-Schmidt operator, then K is compact.*
(b) Let $Ku = \int_0^\pi k(x, \xi)u(\xi)d\xi$, where

$$k(x, \xi) = \begin{cases}
 x - \pi & 0 \leq \xi \leq x \leq \pi, \\
 \xi - \pi & 0 \leq x < \xi \leq \pi.
\end{cases}$$

Explain why this K is compact. Show that it is self adjoint and find the eigenvalues and eigenfunctions for K. (Hint: convert the integral equation into a differential equation plus boundary conditions.)

(c) With K as in part (b), for what values of λ will $u = f + \lambda Ku$ have a solution for all $f \in L^2[a, b]$? Why?

4. Let D be the set of compactly supported C^∞ functions defined on \mathbb{R} and let D' be the corresponding set of distributions.

(a) Define convergence in D and in D'.

(b) Show that every $\psi \in D$ satisfies $\psi(x) = (x^2 \varphi(x))'$ for some $\varphi \in D$ if and only if

$$\int_{-\infty}^{\infty} \psi(x)dx = \int_0^{\infty} \psi(x)dx = \psi(0) = 0.$$

(c) Use the result above to find all $t \in D'$ that solve $x^2t' = 0$, in the sense of distributions.

5. A mass m is subject to a force due to a radial potential $V = V(r)$, where r is the radius in spherical coordinates. The angles θ and φ are the colatitude and longitude, respectively.

(a) Find the system’s Lagrangian in spherical coordinates.

(b) Find the momenta p_r, p_θ and p_φ conjugate to r, θ and φ, respectively, and also the Hamiltonian $H(r, \theta, \varphi, p_r, p_\theta, p_\varphi)$ for the system.

(c) Write down Hamilton’s equations for the system. Use them to show that H is a constant of the motion.

6. Use Laplace’s method and Watson’s lemma to find the first two terms of an asymptotic expansion for

$$I(x) = \int_0^\infty e^{-x \cosh(t)} \sinh^{1/2}(t)dt, \quad x \to +\infty.$$
7. Let \(\sigma \geq 0 \) and consider the Sturm-Liouville problem \((xu')' + \lambda xu = 0\), with \(u(0) \) bounded and \(u'(1) + \sigma u(1) = 0 \).

(a) Show that this S-L problem has the solution \(u = J_0(\sqrt{\lambda}x) \), where \(J_0 \) is the 0 order Bessel function, and where the eigenvalues must satisfy \(\sigma J_0(\sqrt{\lambda}) + \sqrt{\lambda}J_0'(\sqrt{\lambda}) = 0 \).

(b) Write out the functional that must be minimized by \(u \), subject to the constraint \(H(u) = \int_0^1 u^2(x)xdx = 1 \), to get the S-L problem and the boundary conditions.

(c) Use the Courant-Fischer minimax principle to determine how the \(k^{th} \) eigenvalue \(\lambda_k(\sigma) \) behaves as \(\sigma \) increases from 0.

8. Consider the Schrödinger operator with a \(\delta \)-function potential, \(Hu = -u'' + \alpha \delta(x)u \), where \(\alpha > 0 \). For a plane wave incoming from \(-\infty\), find the reflection and transmission coefficients.

9. Let \(Lu = -x(xu')' \) be defined on functions satisfying the boundary condition that \(u(0) = 0 \), and let \(\mathcal{H} \) be the weighted \(L^2 \) space, with the inner product \(\langle f, g \rangle = \int_0^\infty f(x)g(x)\frac{dx}{x} \). You are given that \(L \) will be self adjoint if its domain is \(\mathcal{D}_L = \{ u \in \mathcal{H} \mid Lu \in \mathcal{H} \text{ and } u(0) = 0 \} \).

(a) Find the Green’s function \(G(x, \xi; z) \) for \(-x(xG')' - zG = \delta(x - \xi)\), with \(G(0, \xi; z) = 0 \), \(G(x, \xi; z) \in L^2[0, \infty) \). (This is the kernel for the resolvent \((L - zI)^{-1}\).)

(b) Employ the spectral theorem (and Stone’s formula) to obtain the Mellin transform formulas,

\[
F(s) = \int_0^\infty x^{s-1}f(x)dx \quad \text{and} \quad f(x) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} x^{-s}F(s)ds .
\]