Computation of Chebyshev Polynomials on Union of Intervals

Simon Foucart∗ (Texas A&M University) and Jean Bernard Lasserre† (LAAS-CNRS)

Abstract

Chebyshev polynomials of the first and second kind on a set K are monic polynomials with minimal L_∞-norm on K and minimal L_1-norm on K, respectively. This article presents numerical procedures based on semidefinite programming to compute these polynomials in case K is a finite union of compact intervals. For Chebyshev polynomials of the first kind, the procedure makes use of a characterization of polynomial nonnegativity. It can incorporate additional constraints, e.g., that all the roots of the polynomial lie inside of K. For Chebyshev polynomials of the second kind, the procedure exploits the method of moments.

Key words and phrases: Chebyshev polynomials of the first kind, Chebyshev polynomials of the second kind, nonnegative polynomials, method of moments, semidefinite programming.

AMS classification: 31A15, 41A50, 90C22.

1 Introduction

The Nth Chebyshev polynomial on a compact subset K of \mathbb{C} is defined as the monic polynomial of degree N with minimal max-norm on K. Its uniqueness is a straightforward consequence of the uniqueness of best polynomial approximants to a continuous function (here $z \mapsto z^N$) with respect to the max-norm, see e.g. [4, p. 72, Theorem 4.2]. We shall denote it as T^K_N, i.e.,

$$ T^K_N = \arg\min_{P(z)=z^N+\ldots} \|P\|_K, \quad \text{where } \|P\|_K := \max_{z \in K} |P(z)|. $$

We reserve the notation T^K_N for the Chebyshev polynomial normalized to have max-norm equal to one on K, i.e.,

$$ T_N^K := \frac{T^K_N}{\|T^K_N\|_K}. $$

With this notation, the usual Nth Chebyshev polynomial (of the first kind) satisfies

$$ T_N = T_N^{[-1,1]} = 2^{N-1}T^{[-1,1]}_N, \quad N \geq 1. $$

∗The research of the first author is partially funded by the NSF grants DMS-1622134 and DMS-1664803.
†The research of the second author is funded by the European Research Council (ERC) under the European’s Union Horizon 2020 research and innovation program (grant agreement 666981 TAMING).
Chebyshev polynomials on a compact subset K of \mathbb{C} play an important role in potential theory. For instance, it is known that the capacity $\text{cap}(K)$ of K is related to the Chebyshev numbers $t^K_N := \|T^K_N\|_K$ via

\[(t^K_N)^{1/N} \xrightarrow{N \to \infty} \text{cap}(K),\]

see [11, p.163, Theorem 3.1] for a weighted version of this statement. The articles [11, 2] recently studied in greater details the asymptotics of the convergence (4) in case K is a subset of \mathbb{R}. Notwithstanding, the capacity is in general hard to determine — it can be found explicitly in a few specific situations, e.g. when K is the inverse image of an interval by certain polynomials (see [8, Theorem 11]), and otherwise some numerical recipes for computing the capacity have been proposed in [10]. As for the Chebyshev polynomials, one is tempted to anticipate a worse state of affairs. However, this is not the case for the situation considered in this article, i.e., when $K \subseteq [-1, 1]$ is a finite union of L compact intervals, say

\[K = \bigcup_{\ell=1}^L [a_\ell, b_\ell], \quad -1 = a_1 < b_1 < a_2 < b_2 < \cdots < a_L < b_L = 1.\]

There are explicit constructions of Chebyshev polynomials (as orthogonal polynomials with a predetermined weight, see [9, Theorem 2.3]), albeit only under the condition that T^K_N is a strict Chebyshev polynomial (meaning that it possesses $N + L$ points of equioscillation on K — a condition which is verifiable a priori, see [9, Theorem 2.5]). Chebyshev polynomials can otherwise be computed using Remez-type algorithms on finite unions of intervals, see [5].

The first purpose of this article is to put forward an alternative numerical procedure that enables the exact computation of the Chebyshev polynomials whenever K is a finite union of compact intervals. The procedure, based on semidefinite programming as described in Section 2, can also incorporate a rational weight w and output the polynomials

\[T^K_{N,w} = \arg\min_{P(x) = x^N + \cdots} \left\| \frac{P}{w} \right\|_K.\]

An appealing feature of this approach is that extra constraints can easily be incorporated in the minimization of (6). For instance, we will show how to compute the Nth restricted Chebyshev polynomial on K, i.e., the monic polynomial of degree N having all its roots in K with minimal max-norm on K.

The second purpose of this article is to propose another semidefinite-programming-based procedure to compute weighted Chebyshev polynomial of the second kind, so to say. By this, we mean the polynomials

\[U^K_{N,w} = \arg\min_{P(x) = x^N + \cdots} \left\| \frac{P}{w} \right\|_{L^1(K)}.\]
There is no restriction on the weight \(w \), but this time the computation is only approximate. Nonetheless, it produces lower and upper bounds for the genuine minimum \(\|U_N^K,w\|_{L_1(K)} \). Both bounds are proved to converge to the genuine minimum as a parameter \(d \geq N \) grows to infinity. Incidentally, we shall prove that the Chebyshev polynomial of the second kind on \(K \) has all its roots lying inside of \(K \).

The procedures for computing Chebyshev polynomials of the first and second kind have been implemented in MATLAB. They rely on the external packages CVX (for specifying and solving convex programs [3]) and Chebfun (for numerically computing with functions [12]). They can be downloaded from the authors’ webpage as part of the reproducible file accompanying this article.

2 Chebyshev polynomials of the first kind

With \(K \) as in (5), we consider a rational\(^1\) weight function \(w \) taking the form

\[w = \frac{\Sigma}{\Omega}, \]

where the polynomials \(\Sigma \) and \(\Omega \) are positive and nonnegative, respectively, on each \([a_\ell,b_\ell] \). We shall represent polynomials \(P \) of degree at most \(N \) by their Chebyshev expansions written as

\[P = \sum_{n=0}^{N} p_n T_n. \]

In this way, finding the \(N \)th Chebyshev polynomial of the first kind on \(K \) with weight \(w \) amounts to solving the optimization problem

\[\text{minimize } \max_{p_0,p_1,\ldots,p_N \in \mathbb{R}} \left\| \frac{\Omega P}{\Sigma} \right\|_{[a_\ell,b_\ell]} \quad \text{s.to } p_N = \frac{1}{2^N-1}. \]

After introducing a slack variable \(c \in \mathbb{R} \), this is equivalent to the optimization problem

\[\text{minimize } c \quad \text{s.to } p_N = \frac{1}{2^N-1} \quad \text{and } \left\| \frac{\Omega P}{\Sigma} \right\|_{[a_\ell,b_\ell]} \leq c \quad \text{for all } \ell = 1 : L. \]

The latter constraints can be rewritten as \(-c \leq \Omega P/\Sigma \leq c\) on \([a_\ell,b_\ell], \ell = 1 : L\), i.e., as the two polynomial nonnegativity constraints

\[c \Sigma(x) \pm \Omega(x) P(x) \geq 0 \quad \text{for all } x \in [a_\ell,b_\ell] \quad \text{and all } \ell = 1 : L. \]

The key to the argument is now to exploit an exact semidefinite characterization of these constraints. This is based on the following result, which was already utilized in [7], see Theorem 3 there.

\(^1\)We could also work with piecewise rational weight functions, but we choose not to so in order to avoid overloading already heavy notation.
Proposition 1. Given \([a, b] \subseteq [-1, 1]\) and a polynomial \(C(x) = \sum_{m=0}^{M} c_m T_m(x)\) of degree at most \(M\), the nonnegativity condition

\[
C(x) \geq 0 \quad \text{for all } x \in [a, b]
\]

is equivalent to the existence of semidefinite matrices \(Q \in \mathbb{C}^{(M+1) \times (M+1)}\), \(R \in \mathbb{C}^{M \times M}\) such that

\[
\sum_{i-j=m} Q_{i,j} + \alpha \sum_{i-j=m-1} R_{i,j} - \beta \sum_{i-j=m} R_{i,j} + \overline{\alpha} \sum_{i-j=m+1} R_{i,j} = \begin{cases} \frac{1}{2} c_m, & m = 1 : M \\ c_0, & m = 0 \end{cases},
\]

where \(\alpha = \frac{1}{2} \exp \left(\frac{i}{2} \arccos(a) + \frac{i}{2} \arccos(b) \right)\) and \(\beta = \cos \left(\frac{i}{2} \arccos(a) - \frac{i}{2} \arccos(b) \right)\).

In the present situation, we apply this result to the polynomials \(C = c \Sigma \pm \Omega P\) required to be nonnegative on each \([a_\ell, b_\ell]\). With

\[
M := \max \{ \deg(\Sigma), \deg(\Omega) + N \},
\]

we write the Chebyshev expansions of \(\Sigma\) and of \(\Omega P\) as

\[
\Sigma = \sum_{m=0}^{M} \sigma_m T_m, \quad \Omega P = \sum_{m=0}^{M} (Wp)_m T_m,
\]

where \(W \in \mathbb{R}^{(M+1) \times (N+1)}\) is the matrix of the linear map transforming the Chebyshev coefficients of \(P\) into the Chebyshev coefficients of \(\Omega P\). Our considerations can now be summarized as follows.

Theorem 2. The \(N\)th Chebyshev polynomial \(T_N^{K, w}\) on the set \(K\) given in (5) and with weight \(w\) given in (8) has Chebyshev coefficients \(p_0, p_1, \ldots, p_N\) that solve the semidefinite program

\[
\text{minimize } c \quad \text{s.to} \quad p_N = \frac{1}{2^{N-1}}, \quad Q^{\pm, \ell} \succeq 0, \quad R^{\pm, \ell} \succeq 0,
\]

and

\[
\sum_{i-j=m} Q^{\pm, \ell}_{i,j} + \alpha_\ell \sum_{i-j=m-1} R^{\pm, \ell}_{i,j} - \beta_\ell \sum_{i-j=m} R^{\pm, \ell}_{i,j} + \overline{\alpha_\ell} \sum_{i-j=m+1} R^{\pm, \ell}_{i,j} = \begin{cases} \frac{1}{2} \sigma_m c \pm \frac{1}{2} (Wp)_m, & m = 1 : M \\ \sigma_0 c \pm (Wp)_0, & m = 0 \end{cases},
\]

where \(\alpha_\ell = \frac{1}{2} \exp \left(\frac{i}{2} \arccos(a_\ell) + \frac{i}{2} \arccos(b_\ell) \right)\) and \(\beta_\ell = \cos \left(\frac{i}{2} \arccos(a_\ell) - \frac{i}{2} \arccos(b_\ell) \right)\).

Figure [1] provides examples of Chebyshev polynomials of degree \(N = 5\) on the union of \(L = 3\) intervals which were computed by solving (17). In all cases, the Chebyshev polynomials equioscillate \(N+1 = 6\) times between \(-w\) and \(+w\) on \(K\), as they should. However, they are not strict Chebyshev polynomials, since the number of equioscillation points on \(K\) is smaller than \(N + L = 8\). We notice in (c) and (d) that some roots of the Chebyshev polynomials do not lie in the set \(K\). We display
in (e) and (f) the restricted Chebyshev polynomial on \(K \), i.e., the monic polynomial of degree \(N \) with minimal max-norm on \(K \) which satisfies the additional constraint that all its roots lie in \(K \). This constraint reads

\[
P \text{ does not vanish on } (b_\ell, a_{\ell+1}), \quad \ell = 1 : L - 1.
\]

We consider the semidefinite program (17) supplemented with the relaxed constraint

\[
P \text{ does not change sign on } [b_\ell, a_{\ell+1}], \quad \ell = 1 : L - 1.
\]

This is solved by selecting the smallest value (along with the corresponding minimizer) among the minima of \(2^{L-1} \) semidefinite programs (17) indexed by \((\varepsilon_1, \ldots, \varepsilon_{L-1}) \in \{\pm1\}^{L-1}\), where the added constraint is the semidefinite characterization of the polynomial nonnegativity condition

\[
\varepsilon_\ell P(x) \geq 0 \quad \text{for all } x \in [b_\ell, a_{\ell+1}] \quad \text{and all } \quad \ell = 1 : L - 1.
\]

One checks whether the selected minimizer satisfies the original constraint (18). If it does, then the restricted Chebyshev polynomial has indeed been found, as in (e) and (f) of Figure 1.

Remark. Concerning the computation of the capacity of a union of intervals, we do not recommend using our semidefinite procedure or a Remez-type procedure to produce Chebyshev polynomials before invoking (4) to approximate the capacity. If one really wants to take such a route, it seems wiser to work with the numerically-friendlier orthogonal polynomials

\[
P^K_N = \arg\min_{P(x) = x^N + \ldots} \|P\|_{L_2(K)}.
\]

Indeed, we also have

\[
\|P^K_N\|_{L_2(K)}^{1/N} \overset{N \rightarrow \infty}{\to} \text{cap}(K),
\]

as a consequence of the inequalities

\[
\frac{1}{N + 1} \left[\min_{\ell = 1 : L} (b_\ell - a_\ell) \right]^{1/2} \|T_N^K\|_K \leq \|P^K_N\|_{L_2(K)} \leq \left[\sum_{\ell = 1}^L (b_\ell - a_\ell) \right]^{1/2} \|T_N^K\|_K.
\]

3 Chebyshev polynomials of the second kind

Still with \(K \) as in (5), but with an arbitrary weight function \(w \), we are targeting the \(N \)th Chebyshev polynomial of the second kind on \(K \) with weight \(w \), i.e.,

\[
U^K_N = \arg\min_{P(x) = x^N + \ldots} \left\| \frac{P}{w} \right\|_{L_1(K)}, \quad \text{where} \quad \left\| \frac{P}{w} \right\|_{L_1(K)} = \sum_{\ell = 1}^L \int_{a_\ell}^{b_\ell} \frac{|P(t)|}{w(t)} \, dt.
\]
Computation of Chebyshev Polynomials on Union of Intervals

Figure 1: Nth Chebyshev polynomials of the first kind on unions of L intervals ($N = 5$, $L = 3$): unweighted and unrestricted Chebyshev polynomials are plotted in (a) and (c); (e) shows an unweighted but restricted Chebyshev polynomial; (b), (d), and (f) are the analogous plots to (a), (c), and (e) when a weight is introduced.
Let us drop the superscript w and simply write \mathcal{U}_N^K for $\mathcal{U}_N^{K,w}$. Its uniqueness is a consequence of the uniqueness of best polynomial approximants to a continuous function (here $x \mapsto x^N$) with respect to the L_1-norm, see e.g. [4, p. 86, Theorem 10.9] with a slight adaptation of the argument. Minimizing the L_1-norm on K exactly seems out of reach, so instead we shall perform the minimization of a more tractable ersatz norm, which will be formally defined in Proposition 4. This ersatz norm stems from a reformulation of the L_1-norm on K, as described in the steps below. Given a polynomial P of degree at most N, we start by making two changes of variables to write

$$\left\| P \right\|_{L_1(K)} = \sum_{\ell=1}^{L} \frac{b_{\ell} - a_{\ell}}{2} \int_{-1}^{1} \frac{|P_{\ell}(x)|}{w_{\ell}(x)} dx = \sum_{\ell=1}^{L} \frac{b_{\ell} - a_{\ell}}{2} \int_{0}^{\pi} \left| P_{\ell}(\cos(\theta)) \right| \frac{\sin(\theta) d\theta}{w_{\ell}(\cos(\theta))},$$

where P_{ℓ} and w_{ℓ} denote the functions $P_{|[a_{\ell},b_{\ell}]}$ and $w_{|[a_{\ell},b_{\ell}]}$ transplanted to $[-1,1]$, for instance

$$P_{\ell}(x) = P\left(\frac{(b_{\ell} - a_{\ell})x + a_{\ell} + b_{\ell}}{2} \right), \quad x \in [-1,1].$$

We continue by decomposing the signed measures $P_{\ell}(\cos(\theta))\sin(\theta)/w_{\ell}(\cos(\theta))d\theta$ as differences of two nonnegative measures, so that

$$\left\| P \right\|_{L_1(K)} = \inf_{\mu_1^+,\ldots,\mu_L^+} \sum_{\ell=1}^{L} \frac{b_{\ell} - a_{\ell}}{2} \int_{0}^{\pi} d(\mu_{\ell}^+ + \mu_{\ell}^-) \text{ s.to } d(\mu_{\ell}^+ - \mu_{\ell}^-)(\theta) = P_{\ell}(\cos(\theta)) \frac{\sin(\theta) d\theta}{w_{\ell}(\cos(\theta))},$$

where the infimum is taken over all nonnegative measures on $[0,\pi]$. As is well known, a minimization over nonnegative measures can be reformulated as a minimization over their sequences of moments. There are several options to do so: here, emulating an approach already exploited in [6], see Section 3 there, we rely on the discrete trigonometric moment problem encapsulated in the following statement.

Proposition 3. Given a sequence $y \in \mathbb{R}^N$, there exists a nonnegative measure μ on $[0,\pi]$ such that

$$\int_{0}^{\pi} \cos(k\theta) d\mu(\theta) = y_k, \quad k \geq 0,$$

if and only if the infinite Toeplitz matrix build from y is positive semidefinite, i.e.,

$$\text{Toep}_\infty(y) := \begin{bmatrix} y_0 & y_1 & y_2 & \cdots \\ y_1 & y_0 & y_1 & y_2 \\ \vdots & \vdots & \ddots & \ddots \\ y_3 & y_2 & y_1 & \cdots \end{bmatrix} \succeq 0.$$

The latter means that all the finite sections of $\text{Toep}_\infty(y)$ are positive semidefinite, i.e.,

$$\text{Toep}_d(y) := \begin{bmatrix} y_0 & y_1 & \cdots & \cdots & y_d \\ y_1 & y_0 & y_1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ y_d & \cdots & \cdots & y_1 & y_0 \end{bmatrix} \succeq 0 \quad \text{for all } d \geq 0.$$

7
With $\mathbf{y}^{1,\pm}, \ldots, \mathbf{y}^{L,\pm} \in \mathbb{R}^N$ representing the sequences of moments of μ_1^+, \ldots, μ_L^+, the objective function in (27) just reads
\[
\sum_{\ell=1}^L b_\ell - a_\ell \int_0^\pi d(\mu_\ell^+ + \mu_\ell^-) = \sum_{\ell=1}^L \frac{b_\ell - a_\ell}{2} \left(y_\ell^{+} + y_\ell^{-} \right).
\]

As for the constraints in (27), with $\mathbf{W}^\ell \in \mathbb{R}^{(N+1) \times (N+1)}$ denoting the matrix of the linear map transforming the Chebyshev coefficients of P into the Chebyshev coefficients of the second kind of P_ℓ, so that
\[
P_\ell = \sum_{n=0}^N (\mathbf{W}^\ell \mathbf{p})_n U_n,
\]
they become, for all $\ell = 1 : L$ and all $k \geq 0$,
\[
y_\ell^{+,+} - y_\ell^{-,+} = \sum_{n=0}^N (\mathbf{W}^\ell \mathbf{p})_n \int_0^\pi \cos(k\theta) U_n(\cos(\theta)) \frac{\sin(\theta) d\theta}{w_\ell(\cos(\theta))} = (\mathbf{J}^\ell \mathbf{W}^\ell \mathbf{p})_k,
\]
where the infinite matrices $\mathbf{J}^\ell \in \mathbb{R}^{N \times (N+1)}$ have entries
\[
J_{k,n}^\ell = \int_0^\pi \frac{\cos(k\theta) \sin((n+1)\theta)}{w_\ell(\cos(\theta))} d\theta.
\]
The finite matrices $\mathbf{J}^{\ell,d} \in \mathbb{R}^{(d+1) \times (N+1)}$, obtained by keeping the first $d+1$ rows of \mathbf{J}^ℓ, are to be precomputed and can sometimes be determined explicitly, e.g.
\[
\text{when } w = 1, \quad J_{k,n}^{\ell,d} = \begin{cases}
0 & \text{if } k \text{ and } n \text{ have different parities,} \\
\frac{2(n+1)}{(n+1)^2 - k^2} & \text{if } k \text{ and } n \text{ have similar parities.}
\end{cases}
\]
Taking into account the constraints that the $\mathbf{y}^{\ell,\pm} \in \mathbb{R}^N$ must be sequences of moments, we arrive at a semidefinite reformulation of the weighted L_1-norm on K given by
\[
\| \mathbf{P} \|_{L_1(K)} = \inf_{\mathbf{y}^{1,\pm}, \ldots, \mathbf{y}^{L,\pm} \in \mathbb{R}^{d+1}} \sum_{\ell=1}^L \frac{b_\ell - a_\ell}{2} \left(y_\ell^{+} + y_\ell^{-} \right) \quad \text{s.t.} \quad \mathbf{y}^{\ell,+} - \mathbf{y}^{\ell,-} = \mathbf{J}^\ell \mathbf{W}^\ell \mathbf{p} \\
\quad \text{and } \text{Toep}_d(\mathbf{y}^{\ell,\pm}) \succeq 0.
\]
This expression is not tractable due to the infinite dimensionality of the optimization variables and constraints, but truncating them to a level d leads to a tractable expression — the above-mentioned ersatz norm.

Proposition 4. For each $d \geq N$, the expression
\[
\| \mathbf{P} \|_d := \min_{\mathbf{y}^{1,\pm}, \ldots, \mathbf{y}^{L,\pm} \in \mathbb{R}^{d+1}} \sum_{\ell=1}^L \frac{b_\ell - a_\ell}{2} \left(y_\ell^{+} + y_\ell^{-} \right) \quad \text{s.t.} \quad \mathbf{y}^{\ell,+} - \mathbf{y}^{\ell,-} = \mathbf{J}^{\ell,d} \mathbf{W}^\ell \mathbf{p} \quad \text{and } \text{Toep}_d(\mathbf{y}^{\ell,\pm}) \succeq 0
\]
defines a norm on the space of polynomials of degree at most N. Moreover, one has
\[
\cdots \leq \| \mathbf{P} \|_d \leq \| \mathbf{P} \|_{d+1} \leq \cdots \leq \left\| \mathbf{P} \right\|_{L_1(K)} \quad \text{and} \quad \lim_{d \to \infty} \| \mathbf{P} \|_d = \left\| \mathbf{P} \right\|_{L_1(K)}.
\]
Proof. To justify that the expression in (36) defines a norm, we concentrate on the property

\[\|P\|_d = 0 \implies \|P\| = 0, \]

as the other two norm properties are fairly clear. So, assuming that \(\|P\|_d = 0 \), there exist \(y^{1,\pm}, \ldots, y^{L,\pm} \in \mathbb{R}^{d+1} \) such that

\[
\sum_{\ell=1}^{L} \frac{b_\ell - a_\ell}{2} (y^{\ell,+,0} + y^{\ell,-,0}) = 0, \tag{38}
\]

as well as, for all \(\ell = 1 : L \),

\[
y^{\ell,+,d} - y^{\ell,-,d} = J^{\ell,d} W^\ell p \quad \text{and} \quad \text{Toep}_d(y^{\ell,\pm}) \succeq 0. \tag{39}
\]

The semidefiniteness of the Toeplitz matrices implies that

\[
|y^{\ell,\pm}_k| \leq y^{\ell,\pm}_0 \quad \text{for all } k = 0 : d, \tag{40}
\]

which, in view of (38), yields \(y^{\ell,\pm} = 0 \). By the invertibility of the matrices \(W^\ell \) and the injectivity of the matrices \(J^{\ell,d} \) (easy to check from (33)), we derive that \(p = 0 \), and in turn that \(P = 0 \), as desired.

Let us turn to the justification of (37). The chain of inequalities translates the fact that the successive minimizations impose more and more constraints, hence produce larger and larger minima. The work consists in proving that the limit of the sequence \(\{\|P\|_d\}_{d \geq N} \) equals \(\|P/w\|_{L_1(K)} \) (the limit exists, because the sequence is nondecreasing and bounded above). For each \(d \geq N \), as was done in (38) and (39), we consider minimizers of the problem (35) — they belong to \(\mathbb{R}^{d+1} \) but we pad them with zeros to create infinite sequences \(y^{1,\pm,d}, \ldots, y^{L,\pm,d} \) satisfying

\[
\sum_{\ell=1}^{L} \frac{b_\ell - a_\ell}{2} (y^{\ell,+,d}_0 + y^{\ell,-,d}_0) = \|P\|_d, \tag{41}
\]

as well as, for all \(\ell = 1 : L \),

\[
y^{\ell,+,d} - y^{\ell,-,d} = J^{\ell,d} W^\ell p \quad \text{and} \quad \text{Toep}_\infty(y^{\ell,\pm,d}) \succeq 0. \tag{42}
\]

The semidefiniteness of the Toeplitz matrices, together with (41), implies that, for all \(k \geq 0 \),

\[
|y^{\ell,\pm,d}_k| \leq y^{\ell,\pm}_0 \leq \frac{2}{b_\ell - a_\ell} \|P\|_d \leq \frac{2}{b_\ell - a_\ell} \frac{\|P\|}{w_{L_1(K)}}. \tag{43}
\]

In other words, each sequence \(\{y^{\ell,\pm,d}\}_{d \geq N} \), with entries in the sequence space \(\ell_\infty \), is bounded. The sequential compactness Banach–Alaoglu theorem guarantees the existence of convergent subsequences in the weak-star topology. With \(y^{\ell,\pm} \in \ell_\infty \) denoting their limits, we can write

\[
y^{\ell,\pm,d_m}_k \underset{m \to \infty}{\longrightarrow} y^{\ell,\pm}_k \quad \text{for all } k \geq 0. \tag{44}
\]
Writing (42) for \(d = d_m\) and passing to the limit reveals that the sequences \(y^{1,\pm}, \ldots, y^{L,\pm}\) are feasible for the problem (35). Hence,

\[
\left\| \frac{P}{w} \right\|_{L_1} \leq \sum_{\ell=1}^{L} \frac{b_{\ell} - a_{\ell}}{2} (y^{\ell,+}_0 + y^{\ell,-}_0) = \lim_{m \to \infty} \sum_{\ell=1}^{L} \frac{b_{\ell} - a_{\ell}}{2} (y^{\ell,+}_0 + y^{\ell,-}_0) = \lim_{m \to \infty} \left\| \frac{P}{d_m} \right\|_{L_1} = \lim_{d \to \infty} \left\| \frac{P}{d} \right\|_{L_1}.
\]

This concludes the justification of (37).

Given \(d \geq N\), let us now consider an ersatz \(N\)th Chebyshev polynomial of the second kind on \(K\) (a priori not guaranteed to be unique) defined by

\[
V_{N,d}^K = \arg\min_{P(x) = x^{N+\ldots}} \left\| \frac{P}{d} \right\|_{L_1}.
\]

It is possible to compute such a polynomial by solving the following semidefinite program:

\[
\begin{align*}
\text{minimize} & \quad \sum_{\ell=1}^{L} \frac{b_{\ell} - a_{\ell}}{2} (y^{\ell,+}_0 + y^{\ell,-}_0) \\
\text{s.to} & \quad p_N = \frac{1}{2^{N-1}}, \quad y^{\ell,+} - y^{\ell,-} = J^{\ell d} W^\ell p \\
& \quad \text{and } \text{Toep}_d(y^{\ell,\pm}) \succeq 0.
\end{align*}
\]

The qualitative result below ensures that, as \(d\) increases, the ersatz Chebyshev polynomial \(V_{N,d}^K\) does approach the genuine Chebyshev polynomial \(U^K_N\), which is itself obtained by solving the following (unpractical) semidefinite program:

\[
\begin{align*}
\text{minimize} & \quad \sum_{\ell=1}^{L} \frac{b_{\ell} - a_{\ell}}{2} (y^{\ell,+}_0 + y^{\ell,-}_0) \\
\text{s.to} & \quad p_N = \frac{1}{2^{N-1}}, \quad y^{\ell,+} - y^{\ell,-} = J^\ell W^\ell p \\
& \quad \text{and } \text{Toep}_\infty(y^{\ell,\pm}) \succeq 0.
\end{align*}
\]

Theorem 5. Any sequence \((V_{N,d}^K)_{d \geq N}\) of minimizers of (46) converges to the minimizer of (24), i.e.,

\[
V_{N,d}^K \rightharpoonup_{d \to \infty} U^K_N.
\]

Proof. We first prove that the minima \((\left\| V_{N,d}^K \right\|_{L_1} = U^K_N)\) converge monotonically to the minimum of (24), i.e.,

\[
\cdots \leq \left\| V_{N,d}^K \right\|_{d} \leq \left\| V_{N,d+1}^K \right\|_{d+1} \leq \cdots \leq \left\| U^K_N \right\|_{L_1(K)} \text{ and } \lim_{d \to \infty} \left\| V_{N,d}^K \right\|_{d} = \left\| U^K_N \right\|_{L_1(K)}.
\]

The argument is quite similar to the proof of (37) in Proposition 4. The chain of inequality holds because more and more constraints are imposed. Next, considering coefficients \(p_0^d, p_1^d, \ldots, p_N^d\) and infinite sequences \(y^{1,\pm,d}, \ldots, y^{L,\pm,d}\) satisfying

\[
\sum_{\ell=1}^{L} \frac{b_{\ell} - a_{\ell}}{2} (y^{\ell,+}_0 + y^{\ell,-}_0) = \left\| V_{N,d}^K \right\|_{d},
\]

\(\square\)
as well as $p^d_N = 1/2^{N-1}$ and, for all $\ell = 1 : L$,

\begin{equation}
\begin{aligned}
y^{\ell,+}_d - y^{\ell,-}_d = J^\ell W^\ell p^d_d \quad \text{and} \quad \text{Toep}_d(y^{\ell,+}_d, y^{\ell,-}_d) \succeq 0,
\end{aligned}
\end{equation}

the semidefiniteness of the Toeplitz matrices, together with \cite{51}, still implies that the sequences $(y^{\ell,d}_d)_{d \geq N}$ admit convergent subsequences in the weak-star topology, so we can write

\begin{equation}
\begin{aligned}
y^{\ell,d}_m \rightarrow y^{\ell}_d \quad \text{for all } k \geq 0.
\end{aligned}
\end{equation}

We note that

\begin{equation}
\begin{aligned}
\mathbf{p}^{d_m} = (J^{\ell,N} W^{\ell})^{-1}(y^{\ell,+}_{\{0,\ldots,N\}} - y^{\ell,-}_{\{0,\ldots,N\}}) \rightarrow (J^{\ell,N} W^{\ell})^{-1}(y^{\ell,+}_{\{0,\ldots,N\}} - y^{\ell,-}_{\{0,\ldots,N\}}) =: \mathbf{p}.
\end{aligned}
\end{equation}

It is easy to see that the coefficients $p_0, p_1, \ldots, p_N \in \mathbb{R}$ thus defined, together with the sequences $y^{1,\ldots,1}, y^{L,\ldots,1} \in \mathbb{R}^N$, are feasible for the problem \cite{48}, which implies that

\begin{equation}
\begin{aligned}
\left\| U^K_N \right\|_{L_1} / w \leq \sum_{\ell=1}^{L} \frac{b_\ell - a_\ell}{2} (y^{\ell,+}_0 + y^{\ell,-}_0) = \lim_{m \rightarrow \infty} \sum_{\ell=1}^{L} \frac{b_\ell - a_\ell}{2} (y^{\ell,+}_0 + y^{\ell,-}_0) = \lim_{d \rightarrow \infty} \left\| Y^K_{N,d_m} \right\|_{d_m} = \lim_{d \rightarrow \infty} \left\| Y^K_{N,d} \right\|_{d}.
\end{aligned}
\end{equation}

This concludes the justification of \cite{50}.

We now establish \cite{49} by contradiction. Thus, let us assume that the sequence $(Y^K_{N,d})_{d \geq N}$ does not converge to U^K_N. The boundedness of this sequence, which is a consequence of \cite{37} and \cite{50} via $\left\| Y^K_{N,d} \right\| / N \leq \left\| Y^K_{N,d} / d \right\| / \left\| U^K_N \right\|_{L_1(K)}$, allows us to construct a subsequence $(Y^K_{N,d_m})_{m \geq 0}$ converging to some monic polynomial $Y^K_{N} \neq Y^K_{N}$. By the uniqueness of U^K_N as a minimizer of \cite{24}, we must have $\left\| U^K_N / w \right\|_{L_1(K)} < \left\| Y^K_{N} / w \right\|_{L_1(K)}$. In view of \cite{37}, we choose d large enough so that

\begin{equation}
\begin{aligned}
\left\| Y^K_{N} / w \right\|_{L_1(K)} < \left\| Y^K_{N} / d \right\| + \varepsilon, \quad \text{where } \varepsilon := \left\| Y^K_{N} / w \right\|_{L_1(K)} - \left\| U^K_N / w \right\|_{L_1(K)} > 0.
\end{aligned}
\end{equation}

Let us also observe that, of virtue of \cite{37} and \cite{50},

\begin{equation}
\begin{aligned}
\left\| Y^K_{N} / d \right\| = \lim_{m \rightarrow \infty} \left\| Y^K_{N,d_m} / d \right\| \leq \lim_{m \rightarrow \infty} \left\| Y^K_{N,d_m} \right\|_{d_m} = \left\| U^K_N / w \right\|_{L_1(K)}.
\end{aligned}
\end{equation}

Combining \cite{56} and \cite{57} yields

\begin{equation}
\begin{aligned}
\left\| Y^K_{N} / w \right\|_{L_1(K)} < \left\| U^K_N / w \right\|_{L_1(K)} + \varepsilon = \left\| Y^K_{N} / w \right\|_{L_1(K)},
\end{aligned}
\end{equation}

which is of course a contradiction. The convergence \cite{49} is therefore proved.

\[\square \]

Theorem \ref{thm:main} does not indicate how to a priori choose d in order to reach a prescribed accuracy for the distance between $Y^K_{N,d}$ and U^K_N. However, for a given d, we can assess a posteriori the distance between the ersatz minimum $\left\| Y^K_{N,d} / d \right\|$ and the genuine minimum $\left\| U^K_N / w \right\|_{L_1(K)}$. Indeed, on the one hand, the semidefinite program \cite{47} produces $\left\| Y^K_{N,d} / d \right\|$ while outputting $Y^K_{N,d}$; on the other hand, the weighted L_1-norm $\left\| Y^K_{N,d} / w \right\|_{L_1(K)}$ can be computed once $Y^K_{N,d}$ has been output. These two facts provide lower and upper bounds for the unknown value $\left\| U^K_N / w \right\|_{L_1(K)}$, as stated by the quantitative result below.
Proposition 6. For any \(d \geq N \), one has

\[
\| V_{N,d}^K \|_d \leq \| U_{N}^K / w \|_{L_1(K)} \leq \| V_{N,d}^K / w \|_{L_1(K)},
\]

hence the weighted \(L_1 \)-norm of \(U_{N}^K \) on \(K \) is approximated with a computable relative error of

\[
\delta_{N,d}^K := 1 - \frac{\| V_{N,d}^K \|_d}{\| V_{N,d}^K / w \|_{L_1(K)}} \geq 0.
\]

Proof. By the definition (24) of the genuine Chebyshev polynomial of the second kind, we have

\[
\| U_{N}^K / w \|_{L_1(K)} \leq \| V_{N,d}^K / w \|_{L_1(K)},
\]

and by the definition (46) of the ersatz Chebyshev polynomial of the second kind, together with (37), we have

\[
\| V_{N,d}^K / d \| \leq \| U_{N}^K \|_{d} \leq \| U_{N}^K / w \|_{L_1(K)}.
\]

This establishes the bounds announced in (59). We also notice that the relative error satisfies

\[
\delta_{N,d}^K = \frac{\| V_{N,d}^K / w \|_{L_1(K)} - \| V_{N,d}^K / d \|}{\| V_{N,d}^K / w \|_{L_1(K)}} \to 0,
\]

since, by (49) and (50), both \(\| V_{N,d}^K / w \|_{L_1(K)} \) and \(\| V_{N,d}^K / d \| \) converge to \(\| U_{N}^K / w \|_{L_1(K)} \).

Figure 2 shows ersatz Chebyshev polynomials of the second kind computed on the same examples as in Figure 1. Notice that no ‘restricted’ ersatz Chebyshev polynomials of the second kind are displayed. This is because our experiments suggested that the polynomials \(V_{N,d}^K \) had all their roots in \(K \). The corresponding statement for the polynomials \(U_{N}^K \) can in fact be justified theoretically.

Proposition 7. If \(K \) is the finite union of closed intervals, then the \(N \) roots of the weighted Chebyshev polynomial of the second kind on \(K \) all lie inside of \(K \).

Proof. As a minimizer of (24), the Chebyshev polynomial of the second kind on \(K \) is characterized (see e.g. [4, p. 84, Theorem 10.4]) by the condition

\[
\int_K P(x) \text{sgn}(U_{N}^K(x)) \frac{dx}{w(x)} = 0 \quad \text{for all polynomials } P \text{ of degree less than } N.
\]

This implies that \(U_{N}^K \) has \(N \) roots in \([-1,1]\), as (64) could not hold with \(P(x) = (x-x_1) \cdots (x-x_M) \) if \(U_{N}^K \) had \(M < N \) roots \(x_1, \ldots, x_M \) in \([-1,1]\). Thus, we can write

\[
U_{N}^K(x) = (x-x_1) \cdots (x-x_n)(x-x_{n+1}) \cdots (x-x_N)
\]
with $x_1, \ldots, x_n \in K$ and $x_{n+1}, \ldots, x_N \in [-1, 1] \setminus K$. It $n < N$, then we can perturb x_{n+1}, \ldots, x_N while keeping them in their respective gaps $[b_\ell, a_{\ell+1}]$ and create a monic polynomial distinct from U^K_N taking the form

$$\tilde{U}^K_N(x) = (x - x_1) \cdots (x - x_n)(x - x_{n+1}) \cdots (x - x_N).$$

In view of $\text{sgn}(\tilde{U}^K_N(x)) = \text{sgn}(U^K_N(x))$ for all $x \in K$, the condition (64) is also satisfied for \tilde{U}^K_N, hence \tilde{U}^K_N is another minimizer of (24), which is impossible. This proves that $n = N$, i.e., that all the roots of U^K_N lie inside of K.

\begin{figure}[h]
\centering
\begin{subfigure}{.4\textwidth}
\centering
\includegraphics[width=\textwidth]{fig1a}
\caption{$K = [-1, -\frac{1}{2}] \cup [-\frac{1}{5}, -\frac{1}{5}] \cup \left[\frac{1}{3}, 1\right], \delta^K_{N,d} \approx 7 \cdot 10^{-4}$}
\end{subfigure} \hfill
\begin{subfigure}{.4\textwidth}
\centering
\includegraphics[width=\textwidth]{fig1b}
\caption{$K = [-1, -\frac{1}{2}] \cup [-\frac{1}{5}, -\frac{1}{5}] \cup \left[\frac{1}{3}, 1\right], w(x) = \frac{1 + x^2}{2 - x^2}, \delta^K_{N,d} \approx 6 \cdot 10^{-4}$}
\end{subfigure}
\begin{subfigure}{.4\textwidth}
\centering
\includegraphics[width=\textwidth]{fig1c}
\caption{$K = [-1, -\frac{1}{2}] \cup \left[\frac{1}{3}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right], \delta^K_{N,d} \approx 8 \cdot 10^{-4}$}
\end{subfigure} \hfill
\begin{subfigure}{.4\textwidth}
\centering
\includegraphics[width=\textwidth]{fig1d}
\caption{$K = [-1, -\frac{1}{2}] \cup \left[\frac{1}{3}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right], w(x) = \frac{1 + x^2}{2 - x^2}, \delta^K_{N,d} \approx 8 \cdot 10^{-4}$}
\end{subfigure}
\caption{Ersatz Nth Chebyshev polynomials of the second kind on unions of L intervals computed with $d = 150$ ($N = 5$, $L = 3$): unweighted ersatz Chebyshev polynomials are plotted in (a) and (c); (b) and (d) are the analogous plots to (a) and (c) when a weight is introduced.}
\end{figure}
References

