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Abstract

Chebyshev polynomials of the first and second kind for a set K are monic polynomials with

minimal L∞- and L1-norm on K, respectively. This articles presents numerical procedures

based on semidefinite programming to compute these polynomials in case K is a finite union

of compact intervals. For Chebyshev polynomials of the first kind, the procedure makes use of

a characterization of polynomial nonnegativity. It can incorporate additional constraints, e.g.

that all the roots of the polynomial lie in K. For Chebyshev polynomials of the second kind,

the procedure exploits the method of moments.
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1 Introduction

The Nth Chebyshev polynomial for a compact infinite subset K of C is defined as the monic poly-

nomial of degree N with minimal max-norm on K. Its uniqueness is a straightforward consequence

of the uniqueness of best polynomial approximants to a continuous function (here z 7→ zN ) with

respect to the max-norm, see e.g. [4, p. 72, Theorem 4.2]. We shall denote it as T KN , i.e.,

(1) T KN = argmin
P (z)=zN+···

‖P‖K , where ‖P‖K = max
z∈K
|P (z)|.

We reserve the notation TKN for the Chebyshev polynomial normalized to have max-norm equal to

one on K, i.e.,

(2) TKN =
T KN
‖T KN ‖K

.

With this notation, the usual Nth Chebyshev polynomial (of the first kind) satisfies

(3) TN = T
[−1,1]
N = 2N−1T [−1,1]

N , N ≥ 1.
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†The research of the second author is funded by the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation program (grant agreement 666981 TAMING).
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Chebyshev polynomials for a compact subset K of C play an important role in logarithmic potential

theory. For instance, it is known that the capacity cap(K) of K is related to the Chebyshev numbers

tKN := ‖T KN ‖K via

(4)
(
tKN
)1/N −→

N→∞
cap(K),

see [12, p.163, Theorem 3.1] for a weighted version of this statement. The articles [1, 2] recently

studied in greater detail the asymptotics of the convergence (4) in case K is a subset of R. This

being said, the capacity is in general hard to determine — it can be found explicitly in a few

specific situations, e.g. when K is the inverse image of an interval by certain polynomials (see

[8, Theorem 11]), and otherwise some numerical methods for computing the capacity have been

proposed in [11], see also Section 5.2 of [10]. As for the Chebyshev polynomials, one is tempted to

anticipate a worse state of affairs. However, this is not the case for the situation considered in this

article, i.e., when K ⊆ [−1, 1] is a finite union of L compact intervals1, say

(5) K =
L⋃
`=1

[a`, b`], −1 = a1 < b1 < a2 < b2 < · · · < aL < bL = 1.

There are explicit constructions of Chebyshev polynomials (as orthogonal polynomials with a pre-

determined weight, see [9, Theorem 2.3]), albeit only under the condition that T KN is a strict

Chebyshev polynomial (meaning that it possesses N + L points of equioscillation on K — a con-

dition which is verifiable a priori, see [9, Theorem 2.5]). Chebyshev polynomials can otherwise be

computed using Remez-type algorithms for finite unions of intervals, see [5].

A first contribution of this article is to put forward an alternative numerical procedure that enables

the accurate computation of the Chebyshev polynomials whenever K is a finite union of compact

intervals. The procedure, based on semidefinite programming as described in Section 2, can also

incorporate a weight w (i.e., a continuous and positive function on K), restricted here to be a

rational function, and output the polynomials

(6) T K,wN = argmin
P (x)=xN+···

∥∥∥∥Pw
∥∥∥∥
K

.

An appealing feature of this approach is that extra constraints can easily be incorporated in the

minimization of (6). For instance, we will show how to compute the Nth restricted Chebyshev

polynomial on K, i.e., the monic polynomial of degree N having all its roots in K with minimal

max-norm on K.

A second contribution of this article is to propose another semidefinite-programming-based proce-

dure to compute weighted Chebyshev polynomials of the second kind, so to speak. By this, we

1The assumption K ⊆ [−1, 1] is not restrictive, as any compact subset of R can be moved into the interval [−1, 1]

by an affine transformation.
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mean polynomials2

(7) UK,wN ∈ argmin
P (x)∈xN+···

∥∥∥∥Pw
∥∥∥∥
L1(K)

.

The restriction that the weight w is a rational function is not needed here, but this time the

computation is only approximate. Nonetheless, it produces lower and upper bounds for the genuine

minimium ‖UK,wN /w‖L1(K). Both bounds are proved to converge to the genuine minimum as a

parameter d ≥ N grows to infinity. Along the way, we shall prove that the Chebyshev polynomial

of the second kind for K, if unique, has simple roots all lying inside K.

The procedures for computing Chebyshev polynomials of the first and second kind have been

implemented in matlab. They rely on the external packages CVX (for specifying and solving

convex programs [3]) and Chebfun (for numerically computing with functions [13]). They can be

downloaded from the authors’ webpage as part of the reproducible file accompanying this article.

2 Chebyshev polynomials of the first kind

With K as in (5), we consider a rational3 weight function w taking the form

(8) w =
Σ

Ω
,

where the polynomials Σ and Ω are positive on each [a`, b`]. We shall represent polynomials P of

degree at most N by their Chebyshev expansions written as

(9) P =

N∑
n=0

pnTn.

In this way, finding the Nth Chebyshev polynomial of the first kind for K with weight w amounts

to solving the optimization problem

(10) minimize
p0,p1,...,pN∈R

max
`=1:L

∥∥∥∥ΩP

Σ

∥∥∥∥
[a`,b`]

s.to pN =
1

2N−1
.

After introducing a slack variable c ∈ R, this is equivalent to the optimization problem

(11) minimize
c,p0,p1,...,pN∈R

c s.to pN =
1

2N−1
and

∥∥∥∥ΩP

Σ

∥∥∥∥
[a`,b`]

≤ c for all ` = 1 : L.

2The uniqueness of UK,w
N is not necessarily guaranteed: in the unweighted case, one can e.g. check that the monic

linear polynomials with minimal L1-norm on K = [−1,−c]∪ [c, 1] are all the x− d, d ∈ [−c, c]. We will not delve into

conditions ensuring uniqueness of UK,w
N in this article.

3We could also work with piecewise rational weight functions, but we choose not to do so in order to avoid

overloading already heavy notation.
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The latter constraints can be rewritten as −c ≤ ΩP/Σ ≤ c on [a`, b`], ` = 1 : L, i.e., as the two

polynomial nonnegativity constraints

(12) cΣ(x)± Ω(x)P (x) ≥ 0 for all x ∈ [a`, b`] and all ` = 1 : L.

The key to the argument is now to exploit an exact semidefinite characterization of these constraints.

This is based on the following result, which was established and utilized in [7], see Theorem 3 there.

Proposition 1. Given [a, b] ⊆ [−1, 1] and a polynomial C(x) =
∑M

m=0 cmTm(x) of degree at

most M , the nonnegativity condition

(13) C(x) ≥ 0 for all x ∈ [a, b]

is equivalent to the existence of semidefinite matrices Q ∈ C(M+1)×(M+1), R ∈ CM×M such that

(14)
∑

i−j=m
Qi,j + α

∑
i−j=m−1

Ri,j − β
∑

i−j=m
Ri,j + α

∑
i−j=m+1

Ri,j =

{
1
2cm, m = 1 : M

c0, m = 0

}
,

where α = 1
2 exp

(
ı
2 arccos(a) + ı

2 arccos(b)
)

and β = cos
(
1
2 arccos(a)− 1

2 arccos(b)
)
.

In the present situation, we apply this result to the polynomials C = cΣ ± ΩP required to be

nonnegative on each [a`, b`]. With

(15) M := max {deg(Σ), deg(Ω) +N} ,

we write the Chebyshev expansions of Σ and of ΩP as

(16) Σ =

M∑
m=0

σmTm, ΩP =

M∑
m=0

(Wp)mTm,

where W ∈ R(M+1)×(N+1) is the matrix of the linear map transforming the Chebyshev coefficients

of P into the Chebyshev coefficients of ΩP . Our considerations can now be summarized as follows.

Theorem 2. The Nth Chebyshev polynomial T K,wN for the set K given in (5) and with weight w

given in (8) has Chebyshev coefficients p0, p1, . . . , pN that solve the semidefinite program

minimize
c,p0,p1,...,pN∈R

Q±,`∈R(M+1)×(M+1)

R±,`∈RM×M

c s.to pN =
1

2N−1
, Q±,` � 0, R±,` � 0,(17)

and
∑

i−j=m
Q±,`i,j + α`

∑
i−j=m−1

R±,`i,j − β`
∑

i−j=m
R±,`i,j + α`

∑
i−j=m+1

R±,`i,j

=

{
1
2σmc±

1
2(Wp)m, m = 1 : M

σ0c± (Wp)0, m = 0

}
,

where α` = 1
2 exp

(
ı
2 arccos(a`) + ı

2 arccos(b`)
)

and β` = cos
(
1
2 arccos(a`)− 1

2 arccos(b`)
)
.
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Figure 1 provides examples of Chebyshev polynomials of degree N = 5 for the union of L = 3

intervals which were computed by solving (17). In all cases, the Chebyshev polynomials equioscillate

N+1 = 6 times between −w and +w on K, as they should. However, they are not strict Chebyshev

polynomials, since the number of equioscillation points on K is smaller than N +L = 8. We notice

in (c) and (d) that some roots of the Chebyshev polynomials do not lie in the set K. We display

in (e) and (f) the restricted Chebyshev polynomial for K, i.e., the monic polynomial of degree N

with minimal max-norm on K which satisfies the additional constraint that all its roots lie in K.

This constraint reads

(18) P does not vanish on (b`, a`+1), ` = 1 : L− 1.

We consider the semidefinite program (17) supplemented with the relaxed constraint

(19) P does not change sign on [b`, a`+1], ` = 1 : L− 1.

This is solved by selecting the smallest value (along with the corresponding minimizer) among the

minima of 2L−1 semidefinite programs (17) indexed by (ε1, . . . , εL−1) ∈ {±1}L−1, where the added

constraint is the semidefinite characterization of the polynomial nonnegativity condition

(20) ε`P (x) ≥ 0 for all x ∈ [b`, a`+1] and all ` = 1 : L− 1.

One checks whether the selected minimizer satisfies the original constraint (18). If it does, then

the restricted Chebyshev polynomial has indeed been found, as in (e) and (f) of Figure 1.

Remark. Concerning the computation of the capacity of a union of intervals, we do not recommend

using our semidefinite procedure or a Remez-type procedure to produce Chebyshev polynomials

before invoking (4) to approximate the capacity. If one really wants to take such a route, it seems

wiser to work with the numerically-friendlier orthogonal polynomials

(21) PKN = argmin
P (x)=xN+···

‖P‖L2(K).

Indeed, we also have

(22) ‖PKN ‖
1/N
L2(K) −→N→∞

cap(K),

as a consequence of the inequalities

(23)
1

N + 1

[
min
`=1:L

(b` − a`)
]1/2
‖T KN ‖K ≤ ‖PKN ‖L2(K) ≤

[∑L

`=1
(b` − a`)

]1/2
‖T KN ‖K .

3 Chebyshev polynomials of the second kind

Still with K as in (5), but with an arbitrary (positive and continuous) weight function w, we are

now targeting Nth Chebyshev polynomials of the second kind for K with weight w, i.e.,

(24) UK,wN ∈ argmin
P (x)=xN+···

∥∥∥∥Pw
∥∥∥∥
L1(K)

, where

∥∥∥∥Pw
∥∥∥∥
L1(K)

=
L∑
`=1

∫ b`

a`

|P (t)|
w(t)

dt.
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(e) K = K2, restricted
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(f) K = K2, restricted and weighted

Figure 1: 5th Chebyshev polynomials of the first kind for K1 =
[
− 1,−1

2

]
∪
[
− 1

5 ,
1
5

]
∪
[
1
2 , 1
]

and

for K2 =
[
− 1,−1

2

]
∪
[
1
10 ,

1
5

]
∪
[
2
3 , 1
]
: the first two rows correspond to the unrestricted case, while

restricted Chebyshev polynomials are shown in the last row; the first column corresponds to the

unweighted case, while weighted Chebyshev polynomials with weight w(x) = (1 + x2)/(2− x2) are

shown in the second column.
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Let us drop the superscript w and simply write UKN for UK,wN . Minimizing the L1-norm on K exactly

seems out of reach, so instead we shall perform the minimization of a more tractable ersatz norm,

which will be formally defined in Proposition 4. This ersatz norm stems from a reformulation of

the L1-norm on K, as described in the steps below. Given a polynomial P of degree at most N ,

we start by making two changes of variables to write

(25)

∥∥∥∥Pw
∥∥∥∥
L1(K)

=
L∑
`=1

b` − a`
2

∫ 1

−1

|P`(x)|
w`(x)

dx =
L∑
`=1

b` − a`
2

∫ π

0
|P`(cos(θ))| sin(θ)dθ

w`(cos(θ))
,

where P` and w` denote the functions P|[a`,b`] and w|[a`,b`] transplanted to [−1, 1], for instance

(26) P`(x) = P

(
(b` − a`)x+ a` + b`

2

)
, x ∈ [−1, 1].

We continue by decomposing the signed measures P`(cos(θ)) sin(θ)/w`(cos(θ))dθ as differences of

two nonnegative measures, so that

(27)

∥∥∥∥Pw
∥∥∥∥
L1(K)

= inf
µ±1 ,...,µ

±
L

L∑
`=1

b` − a`
2

∫ π

0
d(µ+` +µ−` ) s.to d(µ+` −µ

−
` )(θ) = P`(cos(θ))

sin(θ)dθ

w`(cos(θ))
,

where the infimum is taken over all nonnegative measures on [0, π]. As is well known, a minimization

over nonnegative measures can be reformulated as a minimization over their sequences of moments.

There are several options to do so: here, emulating an approach already exploited in [6], see

Section 3 there, we rely on the discrete trigonometric moment problem encapsulated in the following

statement.

Proposition 3. Given a sequence y ∈ RN, there exists a nonnegative measure µ on [0, π] such that

(28)

∫ π

0
cos(kθ)dµ(θ) = yk, k ≥ 0,

if and only if the infinite Toeplitz matix build from y is positive semidefinite, i.e.,

(29) Toep∞(y) :=



y0 y1 y2 y3 · · ·
y1 y0 y1 y2

y2 y1 y0 y1
. . .

y3 y2 y1
. . .

. . .
...

. . .
. . .

. . .


� 0.

The latter means that all the finite sections of Toep∞(y) are positive semidefinite, i.e.,

(30) Toepd(y) =



y0 y1 · · · · · · yd

y1 y0 y1
...

... y1
. . .

. . .
...

...
. . .

. . . y1
yd · · · · · · y1 y0


� 0 for all d ≥ 0.
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With y1,±, . . . ,yL,± ∈ RN representing the sequences of moments of µ±1 , . . . , µ
±
L , the objective

function in (27) just reads

L∑
`=1

b` − a`
2

∫ π

0
d(µ+` + µ−` ) =

L∑
`=1

b` − a`
2

(
y`,+0 + y`,−0

)
.

As for the constraints in (27), with W` ∈ R(N+1)×(N+1) denoting the matrix of the linear map

transforming the Chebyshev coefficients of P into the Chebyshev coefficients of the second kind

of P`, so that

(31) P` =
N∑
n=0

(W`p)nUn,

they become, for all ` = 1 : L and all k ≥ 0,

(32) y`,+k − y`,−k =

N∑
n=0

(W`p)n

∫ π

0
cos(kθ)Un(cos(θ))

sin(θ)dθ

w`(cos(θ))
= (J`W`p)k,

where the infinite matrices J` ∈ RN×(N+1) have entries

(33) J `k,n =

∫ π

0

cos(kθ) sin((n+ 1)θ)

w`(cos(θ))
dθ.

The finite matrices J`,d ∈ R(d+1)×(N+1), obtained by keeping the first d + 1 rows of J`, are to be

precomputed numerically and can sometimes even be determined explicitly, e.g.

(34) when w = 1, J `,dk,n =

 0 if k and n have different parities,
2(n+ 1)

(n+ 1)2 − k2
if k and n have similar parities.

Taking into account the constraints that the y`,± ∈ RN must be sequences of moments, we arrive

at a semidefinite reformulation of the weighted L1-norm on K given by∥∥∥∥Pw
∥∥∥∥
L1(K)

= inf
y1,±,...,yL,±∈RN

L∑
`=1

b` − a`
2

(y`,+0 + y`,−0 ) s.to y`,+ − y`,− = J`W`p(35)

and Toep∞(y`,±) � 0.

This expression is not tractable due to the infinite dimensionality of the optimization variables and

constraints, but truncating them to a level d leads to a tractable expression — the above-mentioned

ersatz norm.

Proposition 4. For each d ≥ N , the expression

�P�d := min
y1,±,...,yL,±∈Rd+1

L∑
`=1

b` − a`
2

(y`,+0 + y`,−0 ) s.to y`,+ − y`,− = J`,dW`p(36)

and Toepd(y
`,±) � 0

defines a norm on the space of polynomials of degree at most N . Moreover, one has

(37) · · · ≤ �P�d ≤ �P�d+1 ≤ · · · ≤
∥∥∥∥Pw
∥∥∥∥
L1(K)

and lim
d→∞

�P�d =

∥∥∥∥Pw
∥∥∥∥
L1(K)

.
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Proof. To justify that the expression in (36) defines a norm, we concentrate on the property

[�P�d = 0] =⇒ [P = 0], as the other two norm properties are fairly clear. So, assuming that

�P�d = 0, there exist y1,±, . . . ,yL,± ∈ Rd+1 such that

(38)
L∑
`=1

b` − a`
2

(y`,+0 + y`,−0 ) = 0,

as well as, for all ` = 1 : L,

(39) y`,+ − y`,− = J`,dW`p and Toepd(y
`,±) � 0.

The semidefiniteness of the Toeplitz matrices implies that

(40) |y`,±k | ≤ y
`,±
0 for all k = 0 : d,

which, in view of (38), yields y`,± = 0. By the invertibility of the matrices W` and the injectivity

of the matrices J`,d (easy to check from (33)), we derive that p = 0, and in turn that P = 0, as

desired.

Let us turn to the justification of (37). The chain of inequalities translates the fact that the suc-

cessive minimizations impose more and more constraints, hence produce larger and larger minima.

It remains to prove that the limit of the sequence (�P�d)d≥N equals ‖P/w‖L1(K) (the limit exists,

because the sequence is nondecreasing and bounded above). For each d ≥ N , as was done in (38)

and (39), we consider minimizers of the problem (35) — they belong to Rd+1 but we pad them

with zeros to create infinite sequences y1,±,d, . . . ,yL,±,d satisfying

(41)
L∑
`=1

b` − a`
2

(y`,+,d0 + y`,−,d0 ) = �P�d,

as well as, for all ` = 1 : L,

(42) y`,+,d − y`,−,d = J`W`p and Toep∞(y`,±,d) � 0.

The semidefiniteness of the Toeplitz matrices, together with (41), implies that, for all k ≥ 0,

(43) |y`,±,dk | ≤ y`,±,d0 ≤ 2

b` − a`
� P�d ≤

2

b` − a`

∥∥∥∥Pw
∥∥∥∥
L1(K)

.

In other words, each sequence (y`,±,d)d≥N , with entries in the sequence space `∞, is bounded.

The sequential compactness Banach–Alaoglu theorem guarantees the existence of convergent sub-

sequences in the weak-star topology. With (y`,±,dm)m≥0 denoting these subsequences and y`,± ∈ `∞
denoting their limits, the weak-star convergence implies that

(44) y`,±,dmk −→
m→∞

y`,±k for all k ≥ 0.
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Writing (42) for d = dm and passing to the limit reveals that the sequences y1,±, . . . ,yL,± are

feasible for the problem (35). Hence,∥∥∥∥Pw
∥∥∥∥
L1

≤
L∑
`=1

b` − a`
2

(y`,+0 + y`,−0 ) = lim
m→∞

L∑
`=1

b` − a`
2

(y`,+,dm0 + y`,−,dm0 )(45)

= lim
m→∞

�P�dm = lim
d→∞

�P�d,

where the last equality relied on the fact that the nondecreasing and bounded sequence (�P�d)d≥N
is convergent. This concludes the justification of (37).

Given d ≥ N , let us now consider ersatz Nth Chebyshev polynomials of the second kind for K (a

priori not guaranteed to be unique) defined by

(46) VKN,d ∈ argmin
P (x)=xN+···

� P �d .

It is possible to compute such a polynomial by solving the following semidefinite program:

minimize
p0,p1,...,pN∈R

y1,±,...,yL,±∈Rd+1

L∑
`=1

b` − a`
2

(y`,+0 + y`,−0 ) s.to pN =
1

2N−1
, y`,+ − y`,− = J`,dW`p(47)

and Toepd(y
`,±) � 0.

The qualitative result below ensures that, as d increases, the ersatz Chebyshev polynomials VKN,d ap-

proach genuine Chebyshev polynomials UKN , which are themselves obtained by solving the following

(unpractical) semidefinite program:

minimize
p0,p1,...,pN∈R

y1,±,...,yL,±∈RN

L∑
`=1

b` − a`
2

(y`,+0 + y`,−0 ) s.to pN =
1

2N−1
, y`,+ − y`,− = J`W`p(48)

and Toep∞(y`,±) � 0.

Theorem 5. Any sequence (VKN,d)d≥N of minimizers of (46) admits a subsequence converging

(with respect to any of the equivalent norms on the space of polynomials of degree at most N) to

a minimizer UKN of (24). Moreover, if (24) has a unique minimizer UKN , then the whole sequence

(VKN,d)d≥N converges to UKN , i.e.,

(49) VKN,d −→
d→∞

UKN .

Proof. We first prove that the minima of (46) converge monotonically to the minimum of (24), i.e.,

(50) · · · ≤ �VKN,d�d ≤ �VKN,d+1�d+1 ≤ · · · ≤
∥∥∥∥UKNw

∥∥∥∥
L1(K)

and lim
d→∞

�VKN,d�d =

∥∥∥∥UKNw
∥∥∥∥
L1(K)

.

10
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The argument is quite similar to the proof of (37) in Proposition 4. The chain of inequalities holds

because more and more constraints are imposed. Next, considering coefficients pd0, p
d
1, . . . , p

d
N and

infinite sequences y1,±,d, . . . ,yL,±,d satisfying

(51)

L∑
`=1

b` − a`
2

(y`,+,d0 + y`,−,d0 ) = �VKN,d�d,

as well as pdN = 1/2N−1 and, for all ` = 1 : L,

(52) y`,+,d − y`,−,d = J`W`pd and Toepd(y
`,±,d) � 0,

the semidefiniteness of the Toeplitz matrices, together with (51), still implies that the sequences

(y`,+,d)d≥N admit convergent subsequences in the weak-star topology, so we can write

(53) y`,±,dmk −→
m→∞

y`,±k for all k ≥ 0.

We note that

(54) pdm = (J`,NW`)−1(y`,+,dm{0,...,N} − y`,−,dm{0,...,N}) −→m→∞
(J`,NW`)−1(y`,+{0,...,N} − y`,−{0,...,N}) =: p.

It is easy to see that the coefficients p0, p1, . . . , pN ∈ R thus defined, together with the sequences

y1,±, . . . ,yL,± ∈ RN, are feasible for the problem (48), which implies that∥∥∥∥UKNw
∥∥∥∥
L1

≤
L∑
`=1

b` − a`
2

(y`,+0 + y`,−0 ) = lim
m→∞

L∑
`=1

b` − a`
2

(y`,+,dm0 + y`,−,dm0 )(55)

= lim
m→∞

�VKN,dm�dm = lim
d→∞

�VKN,d �d .

This concludes the justification of (50).

Let us now prove that the sequence (VKN,d)d≥N admits a subsequence converging to a minimizer UKN
of (24). This sequence is bounded (with respect to any of the equivalent norms, e.g. �·�N ): indeed,

as a consequence of (37) and (50), we have �VKN,d�N ≤ �VKN,d�d ≤ ‖UKN /w‖L1(K). Therefore, there

is a subsequence (VKN,dm)m≥0 converging to some monic polynomial VKN . Let us assume that VKN is

not one of the minimizers UKN of (24), i.e., that ‖UKN /w‖L1(K) < ‖VKN /w‖L1(K). In view of (37), we

can choose d large enough so that

(56)
∥∥VKN /w∥∥L1(K)

< �VKN �d +ε, where ε :=
∥∥VKN /w∥∥L1(K)

−
∥∥UKN /w∥∥L1(K)

> 0.

Let us observe that, with d being fixed and by virtue of (37) and (50),

(57) � VKN �d = lim
m→∞

�VKN,dm�d ≤ lim
m→∞

�VKN,dm�dm =
∥∥UKN /w∥∥L1(K)

.

Combining (56) and (57) yields

(58)
∥∥VKN /w∥∥L1(K)

<
∥∥UKN /w∥∥L1(K)

+ ε =
∥∥VKN /w∥∥L1(K)

,

which is of course a contradiction. This implies that VKN is a minimizer of (24), as expected.
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Finally, in case (24) has a unique minimizer UKN , we can establish (49) by contradiction. Namely, if

the sequence (VKN,d)d≥N did not converge to UKN , then we could construct a subsequence (VKN,dm)m≥0
converging to some monic polynomial VKN 6= UKN . Repeating the above arguments would imply that

VKN is a minimizer of (24), i.e., VKN = UKN , providing the required contradiction.

Theorem 5 does not indicate how to choose d a priori in order to reach a prescribed accuracy for

the distance between VKN,d and UKN . However, for a given d, we can assess a posteriori the distance

between the ersatz minimum �VKN,d�d and the genuine minimum ‖UKN /w‖L1(K). Indeed, on the

one hand, the semidefinite program (47) produces �VKN,d�d while outputting VKN,d; on the other

hand, the weighted L1-norm ‖VKN,d/w‖L1(K) can be computed once VKN,d has been output. These

two facts provide lower and upper bounds for the unknown value ‖UKN /w‖L1(K), as stated by the

quantitative result below.

Proposition 6. For any d ≥ N , one has

(59) � VKN,d�d ≤
∥∥UKN /w∥∥L1(K)

≤
∥∥VKN,d/w∥∥L1(K)

,

hence the weighted L1-norm of UKN on K is approximated with a computable relative error of

(60) δKN,d := 1−
�VKN,d�d

‖VKN,d/w‖L1(K)

≥ 0.

Proof. By the definition (24) of the genuine Chebyshev polynomial of the second kind, we have

(61) ‖UKN /w‖L1(K) ≤ ‖VKN,d/w‖L1(K),

and by the definition (46) of the ersatz Chebyshev polynomial of the second kind, together with (37),

we have

(62) � VKN,d�d ≤ �UKN �d ≤ ‖UKN /w‖L1(K).

This establishes the bounds announced in (59). We also notice that the relative error satisfies

(63) δKN,d =
‖VKN,d/w‖L1(K) − �VKN,d�d

‖VKN,d/w‖L1(K)

−→
d→∞

0,

since, according to (49) and (50), both ‖VKN,d/w‖L1(K) and �VKN,d�d converge to ‖UKN /w‖L1(K) in

case of uniqueness of UKN . In case of nonunuqueness, (63) remains true at least for a subsequence.

Figure 2 shows ersatz Chebyshev polynomials of the second kind computed on the same examples

as in Figure 1. Notice that no ‘restricted’ ersatz Chebyshev polynomials of the second kind are

displayed. This is because our experiments suggested that the polynomials VKN,d had simple roots

all lying inside K. The corresponding statement for the polynomials UKN , in case of uniqueness,

can in fact be justified theoretically by the following observation.

12
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Proposition 7. Let UKN be a weighted Chebyshev polynomial of the second kind for a finite union

of closed intervals K ⊆ [−1, 1]. This polynomial is the unique minimizer of (24) if and only if it

has N simple roots all lying inside K.

Proof. As a minimizer of (24), a Chebyshev polynomial of the second kind for K is characterized

(see e.g. [4, p. 84, Theorem 10.4]) by the condition

(64)

∫
K

sgn(UKN (x))P (x)

w(x)
dx = 0 for all polynomials P of degree less than N.

This implies that UKN has N roots in (−1, 1), as (64) would not hold for P (x) = (x− ξ1) · · · (x− ξn)

if UKN had n < N roots ξ1, . . . , ξn in (−1, 1). Moreover, if one of the roots was repeated, we would

have UKN (x) = (x− ξ)2P (x) for some polynomial P of degree N − 2, but then (64) would not hold

for this P either. Thus, the polynomial UKN can be written, with distinct ξ1, . . . , ξN ∈ (−1, 1), as

(65) UKN (x) = (x− ξ1) · · · (x− ξi) · · · (x− ξN ).

Assume that UKN is the unique Chebyshev polynomial of the second kind for K. If one of the ξi’s

does not lie inside K, i.e., if ξi belongs to one of the gaps [b`, a`+1], then we can perturb ξi to ξ̃i
while keeping it in [b`, a`+1]. Hence, the perturbed monic polynomial

(66) ŨKN (x) = (x− ξ1) · · · (x− ξ̃i) · · · (x− ξN ).

still satisfies sgn(ŨKN (x)) = sgn(UKN (x)) for all x ∈ K. The condition (64) is then fulfilled by ŨKN ,

too, so this monic polynomial is another minimizer of (24), which is impossible. We have therefore

proved that the N simple roots of UKN all lie inside K.

Conversely, assume that UKN has N simple roots all lying inside K and let us prove that UKN is the

unique minimizer of (24). Consider a monic polynomial ŨKN with ‖ŨKN /w‖L1(K) = ‖UKN /w‖L1(K).

In view of (64), we notice that

(67)

∫
K

sgn(UKN (x))(UKN (x)− ŨKN (x))

w(x)
dx = 0.

From here, it follows that∥∥∥∥UKNw
∥∥∥∥
L1(K)

=

∫
K

|UKN (x)|
w(x)

dx =

∫
K

sgn(UKN (x))UKN (x)

w(x)
dx(68)

=

∫
K

sgn(UKN (x))ŨKN (x)

w(x)
dx ≤

∫
K

|ŨKN (x)|
w(x)

dx =

∥∥∥∥ ŨKNw
∥∥∥∥
L1(K)

.

The first and the last terms being equal, we must have equality all the way through, which means

that sgn(ŨKN (x)) = sgn(UKN (x)) for all x ∈ K. Given that the polynomial UKN vanishes at distinct

points ξ1, . . . , ξN inside K, the polynomial ŨKN must also vanish at ξ1, . . . , ξN , and since both

polynomials are monic, we must have ŨKN = UKN , proving the uniqueness.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

(d) K = K2, weighted: δKN,d ≈ 8 · 10−4]

Figure 2: Ersatz 5th Chebyshev polynomials of the second kind for K1 =
[
−1,−1

2

]
∪
[
− 1

5 ,
1
5

]
∪
[
1
2 , 1
]

and for K2 =
[
− 1,−1

2

]
∪
[
1
10 ,

1
5

]
∪
[
2
3 , 1
]
: the first column corresponds to the unweighted case,

while weighted ersatz Chebyshev polynomials with weight w(x) = (1 + x2)/(2 − x2) are shown in

the second column.
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