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RIP for Random Matrices



Concentration Inequality

I Let A ∈ Rm×N be a random matrix with entries

ai ,j =
gi ,j√
m

where the gi ,j are independent N (0, 1).

I For a fixed x ∈ RN , note that (Ax)i =
∑N

j=1 ai ,jxj , hence

E
(
(Ax)2i

)
= V

(∑
ai ,jxj

)
=
∑

x2j V(ai ,j) =
‖x‖22
m

,

E
(
‖Ax‖22

)
= ‖x‖22.

I In fact, ‖Ax‖22 concentrates around its mean: for t ∈ (0, 1),

(CI) P(
∣∣‖Ax‖22 − ‖x‖22∣∣ > t‖x‖22) ≤ 2 exp(−ct2m).
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Covering Arguments

Suppose that the random matrix A ∈ Rm×N satisfies (CI).
Let S ⊆ [N] with card(S) = s. Then

P
(
‖A∗SAS − Id‖2→2 > δ

)
≤ 2 exp(−cδ2m)

provided

m ≥ c ′

δ2
s.

The argument relies on the following fact:

A subset U of the unit ball of Rk relative to a norm ‖ · ‖ has
covering and separating numbers satisfying

N (U, ‖ · ‖, ρ) ≤ S(U, ‖ · ‖, ρ) ≤
(

1 +
2

ρ

)k

.
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Restricted Isometry Property

I Suppose that the random matrix A ∈ Rm×N satisfies (CI).
Then

P(δs > δ) ≤ 2 exp(−cδ2m)

provided

m ≥ c ′

δ2
s ln(eN/s).

I The arguments are also valid for subgaussian matrices
(e.g. Bernoulli matrices), since these satisfy (CI), too.

I For Gaussian matrices, more powerful techniques can provide
an explicit value for c ′.
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Summary

The RI conditions for s-sparse recovery are of the type

δκs < δ∗.

They guarantee stable and robust reconstructions in the form, say,

(1) ‖x−∆(Ax+e)‖2 ≤
C√
s
σs(x)1+D‖e‖2 for all x and all e.

Random matrices fulfill the RI conditions with high probability as
soon as

(2) m ≥ c s ln(N/s).

Next, we will see that this number of measurement is optimal, in
the sense that estimates of type (1) require (2) to hold. We will
also examine the gain in replacing for all x in (1) by for a fixed x.
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Other types of random matrices

Under proper normalization of the matrices,

I Partial Fourier matrices with m ≥ cδ−2s ln3(N) rows selected
at random satisfy the RIP with high probability.

I Pregaussian (e.g. Laplace) random matrices with
m ≥ cδs ln(eN/s) rows satisfy with overwhelming probability

(1−δ)�z� ≤ ‖Az‖1 ≤ (1+δ)�z� for all s-sparse z ∈ RN ,

where the slanted norm is comparable to the `2-norm.

I Adjacency matrices of lossless expanders (which exist with
nonzero probability) satisfy

(1− θ)‖z‖1 ≤ ‖Az‖1 ≤ ‖z‖1 for all s-sparse z ∈ RN .
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