Example - 8 February 2008. At the end of class I did an example that had some substitution errors in it. Here it is correctly done.
Problem. Find $\partial z / \partial x$ and $\partial z / \partial y$ for the function implicitly defined by the equation

$$
\begin{equation*}
F(x, y, z)=x^{5}-3 x^{2} z+z^{2}-x y z^{6}+2=0 . \tag{1}
\end{equation*}
$$

In addition, find the tangent plane to this function at the point $x=1, y=1$, $z=1$, given that $(1,1,1)$ satisfies the equation $F(1,1,1)=0$.

Solution. Suppose that we can solve $F(x, y, z)=0$ for $z=z(x, y)$; that is, plugging $z=z(x, y)$ into F results in the equation $F(x, y, z(x, y))=0$. Applying the chain rule to this gives us the following:

$$
\begin{aligned}
\frac{\partial 0}{\partial x}=0 & =\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x} \\
& =\left(5 x^{4}-6 x z-y z^{6}\right)+\left(-3 x^{2}+2 z-6 x y z^{5}\right) \frac{\partial z}{\partial x}
\end{aligned}
$$

Next, solve the last equation for the partial $z_{x}=\frac{\partial z}{\partial x}$ to get

$$
\begin{equation*}
\frac{\partial z}{\partial x}=-\frac{5 x^{4}-6 x z-y z^{6}}{-3 x^{2}+2 z-6 x y z^{5}}=\frac{5 x^{4}-6 x z-y z^{6}}{3 x^{2}-2 z+6 x y z^{5}} \tag{2}
\end{equation*}
$$

To get z_{y}, we do the same steps:

$$
\begin{aligned}
\frac{\partial 0}{\partial y}=0 & =\frac{\partial F}{\partial y} \frac{\partial y}{\partial y}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x} \\
& =\left(-y z^{6}\right)+\left(-3 x^{2}+2 z-6 x y z^{5}\right) \frac{\partial z}{\partial y}
\end{aligned}
$$

Solving for z_{y} then gives us

$$
\begin{equation*}
\frac{\partial z}{\partial y}=-\frac{-x z^{6}}{-3 x^{2}+2 z-6 x y z^{5}}=-\frac{y z^{6}}{3 x^{2}-2 z+6 x y z^{5}} \tag{3}
\end{equation*}
$$

Notice that when we use $x=1, y=1$, and $z=1$, we get

$$
z_{x}(1,1)=\left.\frac{5 x^{4}-6 x z-y z^{6}}{3 x^{2}-2 z+6 x y z^{5}}\right|_{(1,1,1)}=-\frac{2}{7}
$$

Similarly, we see that

$$
z_{y}(1,1)=-\left.\frac{y z^{6}}{3 x^{2}-2 z+6 x y z^{5}}\right|_{(1,1,1)}=-\frac{1}{7}
$$

The equation of the tangent plane is to $z=f(x, y)$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is $z=z_{0}+$ $z_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+z_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$. Hence, the tangent plane to the function implicitly defined by (1) at $(1,1,1)$ is

$$
\begin{equation*}
z=1-\frac{2}{7}(x-1)-\frac{1}{7}(y-1)=\frac{10}{7}-\frac{2}{7} x-\frac{1}{7} y \tag{4}
\end{equation*}
$$

