Name_____

Key for Quiz - Assignment 5

Instructions: In questions 1 to 4, define each space and describe the operations of vector addition (+) and scalar multiplication (\cdot) the corresponding to it. 10 points each.

- 1. \mathcal{P}_n is the set of all polynomials of degree n or less; that is, $\mathcal{P}_n = \{a_0 + a_1x + \dots + a_nx^n\}$. Here are the operations. If $p, q \in \mathcal{P}, p(x) = a_0 + a_1x + \dots + a_nx^n q(x) = b_0 + a_1x + \dots + b_nx^n$, then $(p+q)(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$. If c is a scalar, then $c \cdot p$ is the polynomial $(c \cdot p)(x) = ca_0 + ca_1x + \dots + ca_nx^n$.
- 2. S^n is the set of all bi-infinite sequences with period n. A sequnce $\mathbf{x} = (\dots, x_{-2}, x_{-1}, x_0, x_1, x_2, x_3, \dots)$ is in the space if $x_{k+n} = x_k$ for all k. Addition is defined by $\mathbf{x} + \mathbf{y} = (\dots, x_{-2} + y_{-2}, x_{-1} + y_{-1}, x_0 + y_0, x_1 + y_1, x_2 + y_2, x_3 + y_3, \dots)$ and scalar multiplication by $c \cdot \mathbf{x} = (\dots, cx_{-2}, cx_{-1}, cx_0, cx_1, cx_2, cx_3, \dots).$
- 3. C[0,1] is the set of all functions f defined and continuous on the ineterval [0,1]. If $f,g \in C[0,1]$, then f+g is defined by (f+g)(x) = f(x) + g(x)and $c \cdot f$ is defined by $(c \cdot f)(x) = cf(x)$.
- 4. $C^{(2)}(-\infty, \infty)$ is the set of all functions defined and twice continuously differentiable on $(-\infty, \infty)$ that is, \mathbb{R} . Addition and scalar multiplication are defined as in the previous question.
- 5. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ be a set of vectors in a vector space \mathcal{V} . Define $\operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$.

Answer: The span{ $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ } is the set of all linear combinations of the vectors { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ }. Equivalently, span{ $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ } = { $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_m\mathbf{v}_m | c_1, \dots, c_m$ are scalars}.

1