Key for Quiz - Assignment 5

Instructions: In questions 1 to 4 , define each space and describe the operations of vector addition $(+)$ and scalar multiplication ($\cdot)$ the corresponding to it. 10 points each.

1. \mathcal{P}_{n} is the set of all polynomials of degree n or less; that is, $\mathcal{P}_{n}=$ $\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right\}$. Here are the operations. If $p, q \in \mathcal{P}, p(x)=$ $a_{0}+a_{1} x+\cdots+a_{n} x^{n} q(x)=b_{0}+a_{1} x+\cdots+b_{n} x^{n}$, then $(p+q)(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}$.
If c is a scalar, then $c \cdot p$ is the polynomial
$(c \cdot p)(x)=c a_{0}+c a_{1} x+\cdots+c a_{n} x^{n}$.
2. \mathcal{S}^{n} is the set of all bi-infinite sequences with period n. A sequnce $\mathbf{x}=\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right)$ is in the space if $x_{k+n}=x_{k}$ for all k. Addition is defined by
$\mathbf{x}+\mathbf{y}=\left(\ldots, x_{-2}+y_{-2}, x_{-1}+y_{-1}, x_{0}+y_{0}, x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, \ldots\right)$ and scalar multiplication by
$c \cdot \mathbf{x}=\left(\ldots, c x_{-2}, c x_{-1}, c x_{0}, c x_{1}, c x_{2}, c x_{3}, \ldots\right)$.
3. $C[0,1]$ is the set of all functions f defined and continuous on the ineterval $[0,1]$. If $f, g \in C[0,1]$, then $f+g$ is defined by $(f+g)(x)=f(x)+g(x)$
and $c \cdot f$ is defined by
$(c \cdot f)(x)=c f(x)$.
4. $C^{(2)}(-\infty, \infty)$ is the set of all functions defined and twice continuously differentiable on $(-\infty, \infty)$ - that is, \mathbb{R}. Addition and scalar multiplication are defined as in the previous question.
5. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ be a set of vectors in a vector space \mathcal{V}. Define $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$.

Answer: The span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ is the set of all linear combinations of the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$. Equivalently, $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}=$ $\left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \cdots, c_{m}\right.$ are scalars $\}$.

