Name_____ 1

Test I

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

- 1. For triangle $\triangle PQR$ with vertices P(1,0,1), Q(1,2,2), R(0,1,1), find the following things:
 - (a) (5 pts.) The parametric equation for the plane containing $\triangle PQR$.
 - (b) (5 pts.) $\cos(\angle RPQ)$
 - (c) (5 pts.) The area of $\triangle PQR$.
- 2. (15 pts.) Let $\mathbf{x} = (1, -4, 2, -1)$ and $\mathbf{v} = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2})$. Find the component of \mathbf{x} in the direction of \mathbf{v} (i.e., the projection \mathbf{p} of \mathbf{x} on \mathbf{v}), and the component \mathbf{q} of \mathbf{x} perpendicular to \mathbf{v} .
- 3. (15 pts.) Determine whether the vectors $\mathbf{a}_1 = (-1 2 \ 1 \ 2)^T$, $\mathbf{a}_2 = (2 \ 1 \ 1 \ 0)^T$, $\mathbf{a}_3 = (3 \ 3 \ 0 \ 2)^T$ are linearly independent (LI) or linearly dependent (LD). If they are LD, find at least one nonzero linear combination of them that is **0**.
- 4. A linear system $A\mathbf{x} = \mathbf{b}$ has the augmented matrix $[A|\mathbf{b}]$ given below.

$$[A|b] = \begin{pmatrix} 1 & -1 & 0 & 3 & | & 1 \\ 2 & 1 & 1 & 1 & | & 0 \\ 1 & 2 & 1 & -2 & | & -1 \end{pmatrix}$$

- (a) (10 pts.) Put [A|b] in reduced row echelon form. Determine rank(A) and rank([A|b]). Is the system consistent or inconsistent? If it is consistent, find the parametric form of the solution.
- (b) (5 pts.) The corresponding homogeneous system is $A\mathbf{x} = \mathbf{0}$. Are there any nonzero solutions? Are the columns of A linearly independent or dependent?
- 5. (15 pts.) Use row reduction either to find C^{-1} or to show that it does not exist, given that the matrix C is

$$C = \left(\begin{array}{rrrr} 2 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{array}\right) \,.$$

Please turn over.

6. (15 pts.) Given the matrix B below, use any method to evaluate det(B). From your answer, determine whether B has an inverse. If it does, use Cramer's rule to find the (3,1)-entry the inverse.

$$B = \begin{pmatrix} 1 & 0 & 1 & 2\\ 1 & -3 & 0 & 2\\ 1 & -2 & 1 & 0\\ -2 & 0 & -2 & 3 \end{pmatrix}$$

- 7. (10 pts.) Do one of the following problems.
 - (a) Starting with the properties of the dot product in \mathbb{R}^n positivity, symmetry, additivity, and homogeneity –, prove Schwarz's inequality.
 - (b) Show that if A and B are $m \times p$ and $p \times n$ matrices, then $(AB)^T = B^T A^T$.
 - (c) Show that if $f : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $f(\mathbf{x})$ can be written as $f(\mathbf{x}) = A\mathbf{x}$, where $A = [f(\mathbf{e}_1) \cdots f(\mathbf{e}_n)]$.
 - (d) Let \vec{a} be a fixed vector in \mathbb{R}^3 , and let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $f(\vec{x}) = \vec{a} \times \vec{x}$. Show that f is linear and find the matrix A from part 7c that represents f.

Bonus (5 pts.) Let $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$. Observe that $A^2 = I$. Use this to calculate e^{tA} .