Test II - Key

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

1. Define each space listed and describe the operations of vector addition $(+)$ and scalar multiplication (\cdot) corresponding to it.
(a) (5 pts.) \mathcal{P}_{n} is the set of all polynomials of degree n or less; that is, $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right\}$. Here are the operations. If $p, q \in \mathcal{P}, p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} q(x)=b_{0}+a_{1} x+\cdots+b_{n} x^{n}$, then
$(p+q)(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}$.
If c is a scalar, then $c \cdot p$ is the polynomial $(c \cdot p)(x)=c a_{0}+c a_{1} x+\cdots+c a_{n} x^{n}$.
(b) (5 pts.) $C^{(1)}[0,1]$ is the set of all functions f defined and continuously differentiable on the interval $[0,1]$. If $f, g \in C^{(1)}[0,1]$, then $f+g$ is defined by
$(f+g)(x)=f(x)+g(x)$
and $c \cdot f$ is defined by
$(c \cdot f)(x)=c f(x)$.
2. (15 pts.) Determine whether or not the set S of 2×2 matrices $M=$ $\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$ such that $x+w=0$ is a subspace of $\mathcal{M}_{2,2}$.

Solution. Is $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is in S ? Yes, since $x+w=0+0=0$. Is S closed under addition? Let $M_{1}=\left(\begin{array}{cc}x_{1} & y_{1} \\ z_{1} & w_{1}\end{array}\right)$ and $M_{2}=\left(\begin{array}{cc}x_{2} & y_{2} \\ z_{2} & w_{2}\end{array}\right)$ be in S. We need to check whether $\left(x_{1}+x_{2}\right)+\left(w_{1}+w_{2}\right)$ is 0 . Rearranging terms, we get $\left(x_{1}+x_{2}\right)+\left(w_{1}+w_{2}\right)=\left(x_{1}+w_{1}\right)+\left(x_{2}+w_{2}\right)=0+0=0$. Thus, $M_{1}+M_{2}$ is in S. Is S closed under scalar multiplication? To check this, we to see whether $c x+c w=0$. Again, this is true because $c x+c w=c(x+w)=c \cdot 0=0$
3. ($\mathbf{1 5}$ pts.) Determine whether or not the set $\left\{1, e^{x}, e^{2 x}\right\}$ is linearly independent in $C(-\infty, \infty)$.

Solution. Start with the equation $c_{1}+c_{2} e^{x}+c_{3} e^{2 x} \equiv 0$. Differentiate this twice to get $c_{2} e^{x}+2 c_{3} e^{2 x} \equiv 0$ and $c_{2} e^{x}+4 c_{3} e^{2 x} \equiv 0$. Set $x=0$ in the three equations. This results in the system

$$
c_{1}+c_{2}+c_{3}=0, \quad c_{2}+2 c_{3}=0, \quad c_{2}+4 c_{3}=0
$$

Subtracting the second equation from the third gives $2 c_{3}=0$, so $c_{3}=0$. Using this in the second equation gives $c_{2}+2 \cdot 0=0$, so $c_{2}=0$. Using both values in the first equation then gives $c_{1}=0$. It follows that the set is linearly independent.
4. (10 pts.) Consider $G: C(-\infty, \infty) \rightarrow C(-\infty, \infty)$ given by $G u(x)=$ $\int_{0}^{x} e^{t} u(t) d t$. Show that G is linear and that it is one-to-one.
Solution. By inspection, the domain and range of G are vector spaces. Also, by rules from algebra and calculus, we have:

$$
\begin{aligned}
G[u+v](x) & =\int_{0}^{x} e^{t}(u(t)+v(t)) d t \\
& =\int_{0}^{x} e^{t} u(t) d t+\int_{0}^{x} e^{t} u(t) d t \\
& =G u(x)+G v(x)
\end{aligned}
$$

Thus G is additive. In addition, if c is a scalar, then we have:

$$
\begin{aligned}
G[c u](x) & =\int_{0}^{x} e^{t}(c u(t)) d t \\
& =c \int_{0}^{x} e^{t} u(t) d t \\
& =c G u(x) .
\end{aligned}
$$

Thus, G is also homogeneous. G thus satisfies the conditions for it to be linear. To see that G is one-to-one, we need to solve for u when $G u(x) \equiv 0$. The fundamental theorem of calculus implies

$$
\frac{d}{d x}\left(\int_{0}^{x} e^{t}(c u(t)) d t\right)=e^{x} u(x) \equiv 0
$$

Dividing by e^{x} then gives us that $u=0$. This is equivalent to a linear function being one-to-one, so G is one-to-one.
5. (20 pts.) Find bases for the column space, null space, and row space of C, and state the rank and nullity of C. What should these sum to? Do they?

$$
C=\left(\begin{array}{cccc}
1 & -3 & -1 & -3 \\
-1 & 3 & 2 & 4 \\
2 & -6 & 4 & 0
\end{array}\right)
$$

Solution. Use row operations to put C in reduced row echelon form.

$$
C \Longleftrightarrow R=\left(\begin{array}{cccc}
1 & -3 & 0 & -2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

By the various methods described in class, the bases for the column space, row space, and null space are, respectively, follows.

$$
\left.\left.\left.\begin{array}{c}
\left\{\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right),\left(\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right)\right\}, \quad\left\{\left(\begin{array}{lll}
1 & -3 & 0
\end{array}-2\right.\right.
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right)\right\},\right\}
$$

The rank and nullity of C are both 2 . There sum should be 4 , which is the number of columns, and it is.
6. Given that $L: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be defined by $L(p)=x^{2} p^{\prime \prime}-2(x-1) p^{\prime}+3 p$ is a linear transformation, do the following:
(a) (10 pts.) Find the matrix of L relative to the basis $B=\left\{1, x, x^{2}\right\}$. Solution. First we apply L to the basis. $L[1]=3, L[x]=x+2$, and $L\left[x^{2}\right]=2 x^{2}-4 x^{2}+4 x+3 x^{2}=x^{2}+4 x$. The matrix for L then has as columns the coordinate vectors for each of these, and they are in the same order as B; hence, the matrix is

$$
A=\left(\begin{array}{lll}
3 & 2 & 0 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right)
$$

(b) (5 pts.) Find $\left[2-x+x^{2}\right]_{B}$ and use the matrix from part 6a to solve $L(p)=2-x+x^{2}$ for p.
Solution. First, we have

$$
\left[2-x+x^{2}\right]_{B}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)
$$

The differential equation is completely equivalent to the matrix equation $A[p]_{B}=\left[2-x+x^{2}\right]_{B}$. Let's put this in augmented form and row reduce it.

$$
\left(\begin{array}{ccc|c}
3 & 2 & 0 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \Longleftrightarrow\left(\begin{array}{lll|c}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Hence, $[p]_{E}=(4-51)^{T}$, and so $p(x)=4-5 x+x^{2}$.
7. Let $A=\left(\begin{array}{cc}2 & -1 \\ 2 & 5\end{array}\right)$.
(a) (10 pts.) Find the eigenvalues and eigenvectors of A.

Solution. The characteristic polynomial is

$$
\begin{aligned}
p_{A}(\lambda) & =\operatorname{det}\left(\begin{array}{cc}
2-\lambda & -1 \\
2 & 5-\lambda
\end{array}\right) \\
& =\lambda^{2}-7 \lambda+12=(\lambda-3)(\lambda-4)
\end{aligned}
$$

and so there two eigenvalues, $\lambda 3$ and $\lambda=4$. The two systems we need to solve to get the eigenvectors are just

$$
\left(\begin{array}{cc|c}
-1 & -1 & 0 \\
2 & 2 & 0
\end{array}\right) \text { and }\left(\begin{array}{cc|c}
-2 & -1 & 0 \\
2 & 1 & 0
\end{array}\right)
$$

These give the eigenvectors $(-11)^{T}$ and $(-12)^{T}$, for 3,4 , respectively.
(b) (5 pts.) Use the answer to part 7 a to solve $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$.

Solution $\mathbf{x}=c_{1} e^{3 t}\binom{-1}{1}+c_{2} e^{4 t}\binom{-1}{2}$

