Name_____ 1

Test I

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

- 1. (10 pts.) Find both the parametric equation for the plane passing through the three points P(1,0,1), Q(1,2,2), R(0,1,1) and the area of the triangle $\triangle PQR$.
- 2. (10 pts.) Let $\mathbf{x} = (3, 2, -3, -1)$ and $\mathbf{v} = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$. Find the component of \mathbf{x} in the direction of \mathbf{v} (i.e., the projection \mathbf{p} of \mathbf{x} on \mathbf{v}), and the component \mathbf{q} of \mathbf{x} perpendicular to \mathbf{v} .
- 3. A linear system $A\mathbf{x} = \mathbf{b}$ has the augmented matrix $[A|\mathbf{b}]$ given below.

$$[A|b] = \begin{pmatrix} 1 & 1 & -3 & -2 & 2\\ -1 & -1 & 4 & 3 & -1\\ 1 & 1 & -2 & -1 & 3 \end{pmatrix}$$

- (a) (10 pts.) The corresponding homogeneous system is $A\mathbf{x} = \mathbf{0}$. Is the system overdetermined or underdetermined? Does it have any non-trivial (i.e., non-zero) solutions? Are the columns of Alinearly dependent or linearly independent?
- (b) (15 pts.) Put $[A|\mathbf{b}]$ in reduced row echelon form. Write the solution to $A\mathbf{x} = \mathbf{b}$ in parametric form.
- 4. (20 pts.) Use row reduction either to find C^{-1} or to show that it does not exist, given that the matrix C is

$$C = \left(\begin{array}{rrrr} 1 & -1 & 3\\ 2 & 3 & 4\\ -1 & 3 & -4 \end{array}\right)$$

5. (15 pts.) Evaluate det(B), where B is given below, using any method. Using your answer, determine whether B is singular or invertible.

$$B = \begin{pmatrix} 1 & 2 & 0 & 0 \\ -2 & -3 & 0 & 2 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & -1 & 3 \end{pmatrix}.$$

6. (10 pts.) Find det(FG), given that F and G are the matrices below.

$$F = \begin{pmatrix} 2 & 0 & 0 \\ -2 & -3 & 0 \\ 9 & 1 & 2 \end{pmatrix}, \qquad G = \begin{pmatrix} -5 & 9 & 7 \\ 0 & 2 & -1 \\ 0 & 0 & -2 \end{pmatrix}.$$

7. (10 pts.) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear function for which $f([1 - 1]^T) = [1 \ 2]^T$ and $f([1 \ 1]^T) = [-2 \ 3]^T$. Find the matrix A that represents the function f.