Examples using inner products – notes for 1/17/2020

- 1. Let $\langle f, g \rangle = \int_0^1 f(x) \overline{g(x)} dx$. For f(x) = 3x 1 and $g(x) = \sqrt{x}$. Find the following quantities.
 - (a) ||f|| and ||g||.
 - (b) The angle θ between f and g.
 - (c) The distance between f and g, ||f g||.

Solution.

- (a) $||f||^2 = \int_0^1 f(x)^2 dx = \int_0^1 (3x-1)^2 dx = \int_0^1 (9x^2 6x + 1) dx = 3 3 + 1 = 1$. Hence, ||f|| = 1. For g, $||g||^2 = \int_0^1 (\sqrt{x})^2 dx = \int_0^1 x dx = 1/2$, so $||g|| = \frac{1}{\sqrt{2}}$.
- (b) We need $\langle f,g \rangle = \int_0^1 (3x-1)x^{1/2} dx = 3/(5/2) 1/(3/2) = 6/5 2/3 = 8/15$. Thus, $\cos(\theta) = \frac{8/15}{1 \cdot 2^{-1/2}} = 8\sqrt{2}/15$ and $\theta \approx 0.7163$ radians.
- (c) $||f-g||^2 = \int_0^1 (3x-1-x^{1/2})^2 dx = \int_0^1 (9x^2+x+1-6x^{3/2}-6x-2x^{1/2}) dx$. Doing the integral results in $||f-g|| = \sqrt{13/30}$.
- 2. Consider the 2π periodic signal $f(t) = 1 + 2\sin(t) \cos(4t)$. Find the energy in the signal over the period $-\pi \le t \le \pi$.

Solution. The energy is $E = \int_{-\pi}^{\pi} (1 + 2\sin(t) - \cos(4t))^2 dt$. Expanding this out we have

$$E = \int_{-\pi}^{\pi} (1 + 4\sin^2(t) + \cos^2(4t) + 4\sin(t) - 2\cos(4t) - 4\sin(t)\cos(4t))dt.$$

Doing the integrals gives us $E = 2\pi + 4\pi + \pi + 0 + 0 + 0 = 7\pi$.

3. Let $\psi(t) := \begin{cases} 1 & 0 \le t < 1/2, \\ -1 & 1/2 \le t \le 1 \end{cases}$. The function is shown in Figure 1

below. Consider the space $L^2[0,1]$. Let $f(t) = t^2$. Find $\langle \psi, f \rangle$

Solution. $\langle \psi, f \rangle = \int_0^1 \psi(t) t^2 dt$. Because ψ is discontinuous at t = 1/2, we have to break the integral into two pieces:

$$\int_0^1 \psi(t)t^2 dt = \int_0^{1/2} \psi(t)t^2 dt + \int_{1/2}^1 \psi(t)t^2 dt = \int_0^{1/2} t^2 dt - \int_{1/2}^1 t^2 dt.$$

Evaluating the integrals then gives $\langle \psi, f \rangle = -1/4$.

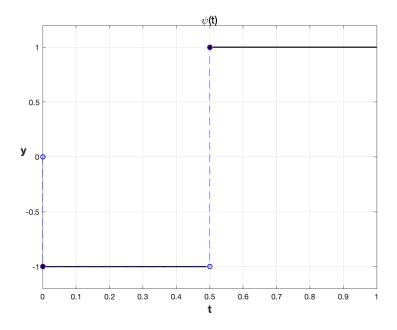


Figure 1: The Haar Wavelet, $\psi(t)$

For ordinary vectors in \mathbb{R}^2 or \mathbb{R}^3 , the projection of \mathbf{v} onto a unit vector \mathbf{u} is given by $\mathbf{p} = |\mathbf{v}| \cos(\theta) \mathbf{u}$, where θ is the usual angle between the two vectors. It represents the component of the vector \mathbf{v} parallel to \mathbf{u} . In addition, the vector $\mathbf{q} = \mathbf{v} - \mathbf{p}$ is the component of \mathbf{v} orthogonal to \mathbf{u}

The interpretation is the same in any inner product space¹, including L^2 . If g and f are in $L^2[a,b]$, with ||f|| = 1, $P = ||g|| \cos(\theta) f = \langle g, f \rangle f$ is the projection of g onto f. In addition, Q = g - P is the component of g orthogonal (perpendicular) to f.

Example. Find the projection of g(x) = x onto $\frac{\sin(2x)}{\sqrt{\pi}}$ in $L^2[-\pi, \pi]$. Solution.

$$P(x) = \left(\int_{-\pi}^{\pi} t \frac{\sin(2t)}{\sqrt{\pi}} dt\right) \frac{\sin(2x)}{\sqrt{\pi}} = -\sin(2x).$$

¹This works for a complex vector space, provided the order $\langle g,f\rangle$ is kept.