Notes for April 15, 2003

The Daubechies' Wavelets. We want to find the p_{k} 's (scaling coefficients) in the Daubechies' $N=2$ case. This is equivalent to finding the function

$$
\begin{equation*}
P(z)=\frac{1}{2}\left(p_{0}+p_{1} z+p_{2} z^{2}+p_{3} z^{3}\right) . \tag{1}
\end{equation*}
$$

Let us make some comments about $P(z)$ in the the general case. There are three conditions that $P(z)$ must satisfy:

1. $|P(z)|^{2}+|P(-z)|^{2} \equiv 1,|z|=1$.
2. $P(1)=1$.
3. $\left|P\left(e^{-i t}\right)\right|>0$ for $|t| \leq \pi / 2$.

Note that $\# 1$, with $z=1$, gives $|P(1)|^{2}+|P(-1)|^{2}=1$. By $\# 2, P(1)=1$, and so $1^{2}+|P(-1)|^{2}=1$, from which it follows that

$$
P(-1)=0
$$

When there are only a finite number of non-zero $p_{k}{ }^{\prime}$,,P is a polynomial. Since $z=-1$ is a root of P, we see that $P(z)$ has $(z+1)^{N}$, for some N, as a factor; that is,

$$
P(z)=(z+1)^{N} \widetilde{P}(z), \quad \widetilde{P}(-1) \neq 0
$$

where $\widetilde{P}(z)$ is the product of the remaining factors of P after dividing out $z+1$ an appropriate number of times.

For the case in equation (1), P is a cubic. The values N can have as thus 1,2 , or 3 . It turns out that $N=1$ gives the Haar case $\left(p_{0}=p_{1}=1\right.$, $p_{2}=p_{3}=0$), and $N=3$ doesn't work. We thus assume that

$$
P(z)=(z+1)^{2}(\alpha+\beta z),
$$

where α and β are also assumed to be real. From $\# 2,1=(1+1)^{2}(\alpha+\beta)$, so $\alpha+\beta=1 / 4$. Hence, we see that P has the form

$$
P(z)=(z+1)^{2}(1 / 4-\beta+\beta z)
$$

The question remaining is, does P satisfy \# 1 and $\# 3$? To begin, we will try to find a β for which \# 1 is satisfied. We do this simply by finding a
value that works for $z=i(|i|=1)$, and check to see if it works for all z with $|z|=1$. We have

$$
P(i)=(1+i)^{2}(1 / 4-\beta+\beta i)=2 i(1 / 4-\beta+\beta i)=-2 \beta+(1 / 2-2 \beta) i
$$

Similarly, $P(-i)=-2 \beta-(1 / 2-2 \beta) i$. Consequently,

$$
|P(i)|^{2}+|P(-i)|^{2}=2(-2 \beta)^{2}+2(1 / 2-2 \beta)^{2}=16 \beta^{2}-4 \beta+1 / 2
$$

Since the left side is 1 by $\# 1$, we end up with $16 \beta^{2}-4 \beta+1 / 2=1$ or $16 \beta^{2}-4 \beta-1 / 2=0$. The roots of this equation are $\beta_{ \pm}=\frac{1 \pm \sqrt{3}}{8}$. It turns out that both values of β provide appropriate p_{k} 's. In fact, the scaling functions they lead to are related to one another by a simple reflection of the x axis about the line $x=3 / 2$. If we choose the "-", then

$$
\begin{aligned}
P(z) & =\frac{1}{8}(1+z)^{2}((1+\sqrt{3})+(1-\sqrt{3}) z) \\
& =\frac{1}{2}(\underbrace{\frac{1+\sqrt{3}}{4}}_{p_{0}}+\underbrace{\frac{3+\sqrt{3}}{4}}_{p_{1}} z+\underbrace{\frac{3-\sqrt{3}}{4}}_{p_{2}} z^{2}+\underbrace{\frac{1-\sqrt{3}}{4}}_{p_{3}} z^{3}) .
\end{aligned}
$$

These are the p_{k} 's given in the text.
Showing that $P(z)$ satisfies \# 1 in our list requires some algebra, but is not really very hard. Verifying \# 3 is even easier. The only points at which $|P(z)|=0$ are precisely the roots of P; namely, $z=-1$ (a double root) and $z=\frac{1+\sqrt{3}}{\sqrt{3}-1} \approx 3.7$. The root at $z=-1=e^{i \pi}$ has angle $t=\pi>\pi / 2$, so $\# 3$ holds in that case. The root at $z \approx 3.7$ has $|z|>1$, so $\# 3$ holds there as well. Thus, for all $|t| \leq \pi / 2$, we have that $\left|P\left(e^{-i t}\right)\right|>0$.

