Name_____

Final Exam – Part 1

Instructions: This take-home part is due on Tuesday, 12/12/06. You may not get help on the test from anyone except your instructor.

- 1. Let $S^h(3,2)$ be the space of C^2 piecewise cubic splines on [0,1], with $x_j = jh, h = 1/n, j = 0 \dots n$.
 - (a) (5 pts.) For any $j, 1 \le j \le n-1$ and any $f \in S^h(3, 2)$, let q and Q be the cubic polynomials that agree with f to the left and the right of x_j , respectively. Specifically, these are defined by q(x) := f(x) when $x_{j-1} \le x \le x_j$ and Q(x) := f(x) when $x_j \le x \le x_{j+1}$. Show that as cubic polynomials, $q(x) Q(x) = A_j(x x_j)^3$, where A_j is a constant independent of x.
 - (b) (5 pts.) Let 2 < j < n-2. Find $f(x) \in S^h(3,2)$ such that $f(x_j) = 1$ and f(x) = 0 if $x \le x_{j-2}$ or if $x \ge x_{j+2}$. Your answer has a very simple form if you use the function $(\cdot)_+$ defined by

$$(x)_+ := \begin{cases} x & \text{if } x \ge 0, \\ 0 & \text{if } x < 0. \end{cases}$$

- (c) (5 pts.) Take n = 6 and $y_j = \sin(2\pi x_j)$. Use Matlab or similar software to interpolate the points (x_j, y_j) using a linear spline and a cubic spline. Plot these two curves along with $y = \sin(2\pi x)$. Constructing the cubic spline requires specifying n+3=9 parameters. However, you are only supplying n+1=7 pieces of data. Explain how the software you are using handles this problem.
- 2. (10 pts.) Prove Theorem 3.9 (p. 124) in the text.
- 3. (10 pts.) Find a Green's function for the boundary value problem $Lu = -u^{"} + u, u \in L^2([0,\infty)), u(0) = 0$. (Hint: modify the argument used in the example at the end of §4.2.)
- 4. The DFT is used to compute approximations to Fourier series coefficients and to Fourier transforms. The idea is to do the following. A signal is really of finite duration, t = 0 to t = T. Its Fourier transform on this interval is

$$\hat{f}(\omega) = \int_0^T f(t)e^{-i\omega t}dt.$$

(a) (5 pts.) If f(t) is sampled at n equally spaced points, $t_j = (T/n)j$, j = 0, ..., n - 1, and if $y_j = f(t_j)$, then show that \hat{f} is related to the the DFT of y_j by the formula,

$$\hat{f}(\omega_k) \approx \frac{T}{n} \hat{y}_k,$$
(1)

where $\omega_k = \frac{2\pi}{T}k, \ k = 0, ..., n - 1.$

(b) (5 pts.) Calculate the Fourier transform \hat{f} of $f(t) = N_2(t)$, where N_2 is the linear B-spline (tent function) with support on [0, 2]. Note that for any $T \ge 2$, we have

$$\hat{f}(\omega) = \int_0^2 N_2(t) e^{-i\omega t} dt = \int_0^T N_2(t) e^{-i\omega t} dt.$$

(c) (5 pts.) Use Matlab or some other software to numerically calculate the FFT approximation to \hat{f} for n = 1024 and T = 16. Plot $|\hat{f}(\omega)|^2$ and compare it to $|\frac{T}{n}\hat{y}_k|^2$. Explain why the curves look so different in the second half of the interval.