Midterm test - take-home part. This part is due on Thursday, 10/25/06. You may not get help on the test from anyone except your instructor.

1. (15 pts.) Prove a two-dimensional version of the Weierstrass Approximation Theorem.
2. (10 pts.) A Lebesgue measurable function $g:[0.1] \rightarrow \mathbb{R}$ is said to be simple if its range consists of finitely many values, $a_{1}<a_{2}<\cdots<a_{n}$. (For example, the characteristic function χ_{A} of a measurable set A is simple because its range is $\{0,1\}$.) Let $E_{j}=g^{-1}\left\{a_{j}\right\}$. Show that

$$
\int_{0}^{1} g(t) d t=\sum_{j=1}^{n} a_{j} m\left(E_{j}\right)
$$

3. Black and white images are stored as $m \times n$ matrices with integers coefficients - 0 to 255 (8-bit) is common. Each entry in A represents a gray scale pixel value. The location in the matrix represents the position of the pixel in the image. Thus a 600×800 image is represented by a matrix with 480,000 entries. The energy in the image is taken to be the sum of the squares of the entries: $E_{A}:=\sum_{j=1}^{m} \sum_{k=1}^{n} a_{j, k}^{2}$.
(a) (5 pts.) Show that $E_{A}=\operatorname{Tr}\left(A^{*} A\right)=\operatorname{Tr}\left(A A^{*}\right)$. Here Tr is the trace. The quantity $\|A\|_{F}:=\sqrt{E_{A}}$ is called the Frobenius norm of A. (See $\S 1.5 .1$ in the text.)
(b) (5 pts.) Let $A=U \Sigma V^{T}$ be the SVD for A, where $U=\left(u_{1} \cdots u_{m}\right)$ and $V=\left(v_{1} \cdots v_{n}\right)$ are orthogonal matrices. Show that $E_{A}=$ $E_{\Sigma}=\sum_{j=1}^{r} \sigma_{j}^{2}$, where $r=\operatorname{rank}(A)$. That is, show that E_{A} is the sum of the squares of the singular values of A.
(c) (5 pts.) Using the "thin" SVD, we can write $A=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}$, and then we can compress an image by truncating this sum at $s<r$. The matrix $B=\sum_{j=1}^{s} \sigma_{j} u_{j} v_{j}^{T}$ then represents the compressed image. Show that \% energy retained $=\frac{\sum_{j=1}^{s} \sigma_{j}^{2}}{\sum_{j=1}^{r} \sigma_{j}^{2}} \times 100 \%$ and $\%$ compression $=\frac{s}{r} \times 100 \%$,
(d) (10 pts.) Find a black and white image and use the method above to compress the image for various values of s / r. How much compression can you achieve without sacrificing too much image quality? How much energy is retained?
