Final examination - take-home part. This part is due on Monday, $12 / 10 / 07$. Each point on this part is worth $1 / 2 \%$ of the final exam grade. You may not get help on the test from anyone except your instructor.

1. Suppose that $f(\theta)$ is 2π-periodic function in $C^{m}(\mathbb{R})$, and that $f^{(m+1)}$ is piecewise continuous and 2π-periodic. Here $m>0$ is a fixed integer. Let c_{k} denote the he $k^{\text {th }}$ (complex) Fourier coefficient for f, and let $c_{k}^{(j)}$ denote the $k^{\text {th }}$ (complex) Fourier coefficient for $f^{(j)}$. Note: in the formulas below, let $I=[-\pi, \pi]$.
(a) (5 pts.) Show that $c_{k}^{(j)}=(-i k)^{j} c_{k}$ and that, for $k \neq 0, c_{k}$ satisfies the bound

$$
\left|c_{k}\right| \leq \frac{1}{2 \pi|k|^{m+1}}\left\|f^{(m+1)}\right\|_{L^{1}(I)}
$$

(b) (15 pts.) Let $f_{n}(\theta)=\sum_{k=-n}^{n} c_{k} e^{i k \theta}$ be the $n^{\text {th }}$ partial sum of the Fourier series for $f, n \geq 1$. Show that there are constants C and C^{\prime} such that

$$
\left\|f-f_{n}\right\|_{L^{2}(I)} \leq \frac{C\left\|f^{(m+1)}\right\|_{L^{1}(I)}}{n^{m+\frac{1}{2}}} \text { and }\left\|f-f_{n}\right\|_{C(I)} \leq \frac{C^{\prime}\left\|f^{(m+1)}\right\|_{L^{1}(I)}}{n^{m}}
$$

(c) (15 pts.) Let $f(x)$ be the 2π-periodic function for which $f(x)=$ $x(\pi-|x|)$ when $x \in[-\pi, \pi]$. Verify that f satisfies the conditions above with $m=1$. With the help of (a), calculate the Fourier coefficients for f, and then plot f and f_{n}, for $n=5,10,30$. Do this in three separate plots, one for each n.
2. (10 pts.) Let \mathcal{H} be a complex Hilbert space, with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. Recall that for a selfadjoint operator L, its norm is given by $\|L\|=\sup _{\|u\|=1}|\langle L u, u\rangle|$. Show that if L is a bounded linear operator on \mathcal{H}, and if $M=\sup _{\|u\|=1}|\langle L u, u\rangle|$, then $M \leq\|L\| \leq 2 M$, whether or not L is selfadjoint. Give an example that shows this result is false in a real Hilbert space. (There is a 2×2 counterexample!)
3. Consider the eigenvalue problem $u^{\prime \prime}+\lambda u=0, u(0)=0, u(1)+u^{\prime}(1)=$ 0 . (This problem arises in connection with solving the heat equation in a uniform bar in which the temperature is 0 at $x=0$ and where Newton's law of cooling applies at $x=1$.) In the following, define $K u(x)=\int_{0}^{1} k(x, y) u(y) d y$, where the kernel is given by

$$
k(x, y):= \begin{cases}\frac{1}{2} x(2-y), & 0 \leq x \leq y \\ \frac{1}{2} y(2-x), & y \leq x \leq 1\end{cases}
$$

(a) (10 pts.) Show that K is a compact, selfadjoint operator on $L^{2}[0,1]$. Also, show that, for $f \in C[0,1]$, the equation $u=K f$ holds if and only if $-u^{\prime \prime}=f, u(0)=0, u(1)+u^{\prime}(1)=0$.
(b) (5 pts.) Use part 3a to show that the eigenfunctions ϕ_{n} for the eigenvalue problem are complete in $L^{2}[0,1]$, and that eigenvalue $\lambda_{n}=1 / \mu_{n}$, where $K \phi_{n}=\mu_{n} \phi_{n}$.
4. Let $\mathcal{H}:=\left\{u \in C[0,1]: u^{\prime} \in L^{2}[0,1]\right.$ and $\left.u(0)=u(1)=0\right\}$. With the inner product $\langle u, v\rangle_{\mathcal{H}}:=\int_{0}^{1} u^{\prime} v^{\prime} d x, \mathcal{H}$ is a real Hilbert space. In the following, define the kernel G via

$$
G(x, y):= \begin{cases}x(1-y), & 0 \leq x \leq y \tag{1}\\ y(1-x), & y \leq x \leq 1\end{cases}
$$

(a) (10 pts.) Fix y. Show that $G(x, y)$ is in \mathcal{H}, and that for any u in \mathcal{H} with a piecewise continuous derivative on $[0,1], u(y)=$ $\langle u, G(\cdot, y)\rangle_{\mathcal{H}}=\langle u, G(y, \cdot)\rangle_{\mathcal{H}}$.
(b) (10 pts.) Let $X:=\left\{x_{j}\right\}_{j=1}^{N}, 0<x_{1}<x_{2}<\cdots<x_{N}<1$, be a set of N distinct points in $[0,1]$. Show that the set $\left\{G\left(\cdot, x_{j}\right)\right\}_{j=1}^{N}$ is linearly independent and is thus a basis for $V_{X}:=\operatorname{span}\left\{G\left(\cdot, x_{j}\right)\right\}_{j=1}^{N}$
(c) (5 pts.) Define the $N \times N$ selfadjoint matrix $A_{j, k}:=G\left(x_{j}, x_{k}\right)$. Show that A is positive definite - i.e., $c^{T} A c>0$ for all $0 \neq c \in \mathbb{R}^{N}$.
(d) (5 pts.) Show that if $u \in C[0,1]$, then there is a unique $u_{X} \in V_{X}$ such that $u_{X}\left(x_{j}\right)=u\left(x_{j}\right) ; u_{X}$ is called an interpolant for u on X.
(e) (10 pts.) Show that if $u \in \mathcal{H}$, then the interpolant u_{X} satisfies $\left\|u-u_{X}\right\|_{\mathcal{H}}=\min _{v \in V_{X}}\|u-v\|_{\mathcal{H}}$; that is, u_{X} minimizes the interpolation error (or distance of u from u_{X}) measured in the norm of \mathcal{H}.

