Midterm test – take-home part. (120 points) This part is due on Monday, 10/19/15. You may get help on the test *only* from your instructor, and no one else. You may use other books, the web, etc. If you do so, quote the source.

- 1. (15 pts.) An $n \times n$ matrix N is said to be normal if and only if $N^*N = NN^*$. Show that N is diagonalizable. (Hint: follow the proof for the self-adjoint case.)
- 2. The Legendre polynomials are defined by $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$.
 - (a) (5 pts.) Show that $P_n(-x) = (-1)^n P_n(x)$.
 - (b) (5 pts.) Show that $P_n(x) = 2^{-n} \binom{2n}{n} x^n 2^{-n} n \binom{2n-2}{n-2} x^{n-2} + \text{lower}$ order terms, if $n \ge 2$.
 - (c) (10 pts.) Use the previous parts above and problem 2.2.9(b) in Keener to show that, for $n \ge 1$, $(n+1)P_{n+1}(x) - (2n+1)xP_n(x) +$ $nP_{n-1}(x) = 0.$
- 3. Suppose that f(x) is 2π -periodic function in $C^{(m)}(\mathbb{R})$, and that $f^{(m+1)}$ is piecewise continuous and 2π -periodic. Here m > 0 is a fixed integer. Let c_k denote the k^{th} (complex) Fourier coefficient for f, and let $c_k^{(j)}$ denote the k^{th} (complex) Fourier coefficient for $f^{(j)}$.
 - (a) (10 pts.) Show that $c_k^{(j)} = (ik)^j c_k, \ j = 0, \dots, m+1.$
 - (b) (5 pts.) For $k \neq 0$, show that c_k satisfies the bound

$$|c_k| \le \frac{1}{2\pi |k|^{m+1}} \|f^{(m+1)}\|_{L^1[0,2\pi]}$$

(c) (10 pts.) Let $f_n(x) = \sum_{k=-n}^n c_k e^{ik\theta}$ be the n^{th} partial sum of the Fourier series for $f, n \ge 1$. Show that both of these hold for f.

$$\|f - f_n\|_{L^2[0,2\pi]} \le \frac{\|f^{(m+1)}\|_{L^1[0,2\pi]}}{\sqrt{\pi} n^{m+\frac{1}{2}}} \text{ and } \|f - f_n\|_{C[0,2\pi]} \le \frac{\|f^{(m+1)}\|_{L^1[0,2\pi]}}{\pi n^m}$$

4. (15 pts.) Let f(x) be the 2π -periodic function that equals $x^2(2\pi - x)^2$ when $x \in [0, 2\pi]$. Verify that f satisfies the conditions above with m =2. Calculate the Fourier series for f''' and then use it and problem 3a to find the Fourier series for f. (You will need to find c_0 directly.)

2

5. Let $f \in L^2_w[0,1]$, where w is a weight function that is strictly positive and continuous on (0,1], and that satisfies $\int_0^1 w(x)dx = 1$. (For example, $w(x) = \frac{1}{2}x^{-\frac{1}{2}}$ is such a function, and so is $w(x) = \frac{2}{3}x^{\frac{1}{2}}$.) Our aim is to prove the theorem below in several steps. You may assume that all functions are real valued.

Theorem 1. C[0,1] is dense in $L^2_w[0,1]$.

(a) (5 pts.) Let $a/2 < \delta < a < 1$. Let g be continuous on [a, 1]. Extend g to be continuous on [0, 1] by letting $g(x) = g(a))(x - \delta)/(a - \delta)$ on $[\delta, a]$ and 0 on $[0, \delta]$. Show that

$$\int_0^a g(x)^2 w(x) dx \le g(a)^2 \int_{\delta}^a w(x) dx$$

(b) (10 pts.) Show that for $f \in L^2_w[0,1]$ and g as defined above, we have

$$\int_{0}^{1} (f(x) - g(x))^{2} w(x) dx \leq 2 \int_{0}^{a} f(x)^{2} w(x) dx + 2g(a)^{2} \int_{\delta}^{a} w(x) dx + \int_{a}^{1} (f(x) - g(x))^{2} w(x) dx$$

- (c) (10 pts.) Show that if $f \in L^2_w[0,1]$, then $f \in L^2[a,1]$.
- (d) (10 pts.) Finish the proof: given $\epsilon > 0$, appropriately choose a, g, and δ , in that order, to get $||f g||_{L^2_w[0,1]} < \epsilon$.
- 6. (10 pts.) Use the result above to show that the Chebyshev polynomials form a complete orthogonal set with respect to the weight function $w(x) = (1 x^2)^{-1/2}, -1 < x < 1.$