Midterm test - take-home part. (120 points) This part is due on Monday, $10 / 19 / 15$. You may get help on the test only from your instructor, and no one else. You may use other books, the web, etc. If you do so, quote the source.

1. (15 pts.) An $n \times n$ matrix N is said to be normal if and only if $N^{*} N=N N^{*}$. Show that N is diagonalizable. (Hint: follow the proof for the self-adjoint case.)
2. The Legendre polynomials are defined by $P_{n}(x)=\frac{1}{2^{n}!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.
(a) (5 pts.) Show that $P_{n}(-x)=(-1)^{n} P_{n}(x)$.
(b) (5 pts.) Show that $P_{n}(x)=2^{-n}\binom{2 n}{n} x^{n}-2^{-n} n\binom{2 n-2}{n-2} x^{n-2}+$ lower order terms, if $n \geq 2$.
(c) (10 pts.) Use the previous parts above and problem 2.2.9(b) in Keener to show that, for $n \geq 1,(n+1) P_{n+1}(x)-(2 n+1) x P_{n}(x)+$ $n P_{n-1}(x)=0$.
3. Suppose that $f(x)$ is 2π-periodic function in $C^{(m)}(\mathbb{R})$, and that $f^{(m+1)}$ is piecewise continuous and 2π-periodic. Here $m>0$ is a fixed integer. Let c_{k} denote the $k^{\text {th }}$ (complex) Fourier coefficient for f, and let $c_{k}^{(j)}$ denote the $k^{\text {th }}$ (complex) Fourier coefficient for $f^{(j)}$.
(a) (10 pts.) Show that $c_{k}^{(j)}=(i k)^{j} c_{k}, j=0, \ldots, m+1$.
(b) (5 pts.) For $k \neq 0$, show that c_{k} satisfies the bound

$$
\left|c_{k}\right| \leq \frac{1}{2 \pi|k|^{m+1}}\left\|f^{(m+1)}\right\|_{L^{1}[0,2 \pi]}
$$

(c) (10 pts.) Let $f_{n}(x)=\sum_{k=-n}^{n} c_{k} e^{i k \theta}$ be the $n^{t h}$ partial sum of the Fourier series for $f, n \geq 1$. Show that both of these hold for f.

$$
\left\|f-f_{n}\right\|_{L^{2}[0,2 \pi]} \leq \frac{\left\|f^{(m+1)}\right\|_{L^{1}[0,2 \pi]}}{\sqrt{\pi} n^{m+\frac{1}{2}}} \text { and }\left\|f-f_{n}\right\|_{C[0,2 \pi]} \leq \frac{\left\|f^{(m+1)}\right\|_{L^{1}[0,2 \pi]}}{\pi n^{m}}
$$

4. ($\mathbf{1 5} \mathbf{p t s .)}$ Let $f(x)$ be the 2π-periodic function that equals $x^{2}(2 \pi-x)^{2}$ when $x \in[0,2 \pi]$. Verify that f satisfies the conditions above with $m=$ 2. Calculate the Fourier series for $f^{\prime \prime \prime}$ and then use it and problem 3a to find the Fourier series for f. (You will need to find c_{0} directly.)
5. Let $f \in L_{w}^{2}[0,1]$, where w is a weight function that is strictly positive and continuous on $(0,1]$, and that satisfies $\int_{0}^{1} w(x) d x=1$. (For example, $w(x)=\frac{1}{2} x^{-\frac{1}{2}}$ is such a function, and so is $w(x)=\frac{2}{3} x^{\frac{1}{2}}$.) Our aim is to prove the theorem below in several steps. You may assume that all functions are real valued.

Theorem 1. $C[0,1]$ is dense in $L_{w}^{2}[0,1]$.
(a) (5 pts.) Let $a / 2<\delta<a<1$. Let g be continuous on $[a, 1]$. Extend g to be continuous on $[0,1]$ by letting $g(x)=g(a))(x-$ $\delta) /(a-\delta)$ on $[\delta, a]$ and 0 on $[0, \delta]$. Show that

$$
\int_{0}^{a} g(x)^{2} w(x) d x \leq g(a)^{2} \int_{\delta}^{a} w(x) d x .
$$

(b) (10 pts.) Show that for $f \in L_{w}^{2}[0,1]$ and g as defined above, we have

$$
\begin{aligned}
\int_{0}^{1}(f(x)-g(x))^{2} w(x) d x & \leq 2 \int_{0}^{a} f(x)^{2} w(x) d x+ \\
2 g(a)^{2} \int_{\delta}^{a} w(x) d x & +\int_{a}^{1}(f(x)-g(x))^{2} w(x) d x
\end{aligned}
$$

(c) (10 pts.) Show that if $f \in L_{w}^{2}[0,1]$, then $f \in L^{2}[a, 1]$.
(d) (10 pts.) Finish the proof: given $\epsilon>0$, appropriately choose a, g, and δ, in that order, to get $\|f-g\|_{L_{w}^{2}[0,1]}<\epsilon$.
6. ($\mathbf{1 0}$ pts.) Use the result above to show that the Chebyshev polynomials form a complete orthogonal set with respect to the weight function $w(x)=\left(1-x^{2}\right)^{-1 / 2},-1<x<1$.

