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1 Bounded operators & examples

Let V and W be Banach spaces. We say that a linear transformation L :
V →W is bounded if and only if there is a constant K such that ‖Lv‖W ≤
K‖v‖V for all v ∈ V . Equivalently, L is bounded whenever

‖L‖op := sup
v 6=0

‖Lv‖W
‖v‖V

(1.1)

is finite. ‖L‖op is called the norm of L. Frequently, the same operator may

map another space Ṽ → W̃ , rather than V → W . When this happens,
we will need to note which spaces are involved. For instance, if V and W
are the spaces involved, we will use the notation ‖L‖V→W for the operator
norm. In addition to the expression given in (1.1), it is easy to show that
‖L‖op is also given by

‖L‖op := min{K > 0: ‖Lv‖W ≤ K‖v‖V ∀v ∈ V }. (1.2)

As usual, we say L : V →W is continuous at v ∈ V if and only if for every
ε > 0 there is a δ > 0 such that ‖Lu − Lv‖W < ε whenever ‖u − v‖V < δ.
Of course, this is just the standard definition of continuity. Be aware that it
holds whether or not L is linear. When L is linear, the distinction between
u, v becomes irrelevant, because ‖Lu− Lv‖W = ‖L(u− v)‖W . From this it
immediately follows that L will be continuous at every v ∈ V whenever it
is continuous at v = 0. The proposition below connects boundedness and
continuity for linear transformations. The proof is left as an exercise.

Proposition 1. A linear transformation L : V → W is continuous if and
only if it is bounded.

We will now provide a number of examples of bounded operators and
unbounded operators.
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Example 1. Let L : C[0, 1]→ C[0, 1] be given by Lu(x) =
∫ 1
0 k(x, y)u(y)dy,

where k ∈ C(R), R = [0, 1]×[0, 1]. We have that |Lu(x)| ≤
∫ 1
0 |k(x, y)| |u(y)|dy,

so |Lu(x)| ≤ ‖k‖C(R)‖u‖C([0,1]). Consequently, ‖L‖C→C ≤ ‖k‖C(R)‖u‖C([0,1])

Example 2. Hilbert-Schmidt operators.

Definition 1. Let R = [0, 1]× [0, 1] and let k : R→ R. If k ∈ L2(R), then
k is called a Hilbert-Schmidt kernel.

Proposition 2. Let k be a Hilbert-Schmidt kernel. The linear operator
Lu(x) =

∫ 1
0 k(x, y)u(y)dy maps L2[0, 1] → L2[0, 1] and is bounded. More-

over, ‖L‖L2→L2 ≤ ‖k‖L2(R).

Proof. Since k(x, y) ∈ L2(R),
∫
R |k(x, y)|2dxdy <∞, we have that |k(x, y)|2 ∈

L1(R). Fubini’s theorem then implies that
∫ 1
0 |k(x, y)|2dy exists for almost

every x and, in x, is in L1[0, 1]. But this also implies that for almost every
x, |k(x, y)|2 is L2 in y. Hence, by Schwarz’s inequality,

|Lu(x)|2 =

∣∣∣∣ ∫ 1

0
k(x, y)u(y)dy

∣∣∣∣2 ≤ ∫ 1

0
|k(x, y)|2dy

∫ 1

0
|u(y)|2dy︸ ︷︷ ︸
‖u‖2

L2

.

Integrating both sides in x then yields ‖Lu‖2L2[0,1] ≤ ‖k‖
2
L2(R)‖u‖

2
L2[0,1], so

‖Lu‖L2[0,1] ≤ ‖k‖L2(R)‖u‖L2[0,1]. Then by (1.2), we see that ‖L‖L2→L2 ≤
‖k‖L2(R), which completes the proof.

Example 3. Consider L2[0, 1]. The differentiation operator D = d
dx is

defined on all f ∈ C1[0, 1], which is dense in L2 because it contains the set
of polynomials. The question is whether D is bounded, or at least can be
extended to a bounded operator on L2. The answer is no. Let un(x) :=√

2 sin(nπx). These functions are in C1[0, 1] and they satisfy ‖un‖L2 = 1.
Since Dun = nπ

√
2 cos(nπx), ‖Dun‖L2 = nπ. Consequently,

‖Dun‖L2

‖un‖L2

= nπ →∞, as n→∞.

Thus D is an unbounded operator on L2[0, 1].
The situation changes if we use a different space. Consider the Sobolev

space H1[0, 1], which has the inner product

〈f, g〉H1 =

∫ 1

0
f(x)g(x) + f ′(x)g′(x)dx.
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The operator D : H1 → L2 turns out to be bounded. In fact, one can
show that ‖D‖H1→L2 = 1. (It’s easy to show that ‖D‖H1→L2 is at most 1.
Showing that it’s exactly one requires more work.)

2 Closed subspaces

The usual definition of subspace holds for Banach spaces and for Hilbert
spaces. Such subspaces inherit norms and/or inner products from the larger
spaces. They are said to be closed if they contain all of their limit points.

Finite dimensional subspaces are always closed. Earlier, when we dis-
cussed completeness of an orthonormal set U = {un}∞n=1 in a Hilbert space
H, we saw that the space HU = {f ∈ H : f =

∑
n〈f, un〉un} is closed in

H. When C[0, 1] is considered to be a subspace of L2[0, 1], it is not closed.
However, C[0, 1] is a closed subspace of L∞[0, 1].

Given a subspace V of a Hilbert space H, we define the orthogonal com-
plement of V to be

V ⊥ := {f ∈ H : 〈f, g〉 = 0 ∀g ∈ V }.

Proposition 3. V ⊥ is a closed subspace of H.
Proof. Let {fn}∞n=1 be a sequence in V ⊥ that converges to a function f ∈ H.
Since each fn is in V ⊥, 〈fn, g〉 = 0 for every g ∈ V . Also, because the inner
product is continuous, limn→∞〈fn, g〉 = 〈f, g〉. It immediately follows that
〈f, g〉 = 0. so f ∈ V ⊥. Consequently, V ⊥ is closed in H.

Bounded linear operators mapping V →W , where V and W are Banach
spaces, have all of the usual subspaces associated with them. Let L : V →W
be bounded and linear. The domain of L is D(L) = V . The range of L is
defined as R(L) := {w ∈ W : ∃v ∈ W for which Lv = W}. Finally, the null
space (or kernel) of L is N(L) := {v ∈ V : Lv = 0}.
Proposition 4. If L : V → W is bounded and linear, then the null space
N(L) is a closed subspace of V .

Proof. The proof again relies on the continuity of L. If {fn}∞n=1 is a sequence
in N(L) that converges to f ∈ V . By Proposition 1, L is continuous, so
limn→∞ Lfn = Lf . But, because fn ∈ N(L), Lfn = 0. Combining this with
limn→∞ Lfn = Lf , we see that Lf = 0 and so f ∈ N(L). Thus, N(L) is a
closed subspace of V .

Previous: X-ray tomography and integral equations
Next: the projection theorem, Reisz representation theorem and the Fred-
holm alternative
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