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Throughout these notes, H denotes a separable Hilbert space. We will use
the notation B(H) to denote the set of bounded linear operators on H. We
also note that B(H) is a Banach space, under the usual operator norm.

1 Compact and Precompact Subsets of H

Definition 1.1. A subset S of H is said to be compact if and only if it is
closed and every sequence in S has a convergent subsequence. S is said to
be precompact if its closure is compact.

Proposition 1.2. Here are some important properties of compact sets.

1. Every compact set is bounded.

2. Let S be a bounded set. Then S is precompact if and only if every
sequence has a convergent subsequence.

3. Let H be finite dimensional. Every closed, bounded subset of H is
compact.

4. In an infinite dimensional space, closed and bounded is not enough.

Proof. Properties 2 and 3 are left to the reader. For property 1, assume
that S is an unbounded compact set. Since S is unbounded, we may select
a sequence {vn}∞n=1 from S such that ‖vn‖ → ∞ as n → ∞. Since S is
compact, this sequence will have a convergent subsequence, say {vnk

}∞k=1,
which still will be unbounded.(Why?) Let v = limk→∞ vnk

. Thus, for ε = 1
there is a positive integer K for which ‖v − vnk

‖ < 1 for all k ≥ K. By the
triangle inequality, ‖vnk

‖ ≤ ‖v‖ + 1. Now, the right side is bounded, but
the left side isn’t, since ‖vnk

‖ → ∞ as k → ∞. This is a contradiction, so
S must be bounded. For property 4, let S = {f ∈ H : ‖f‖ ≤ 1}. Every
o.n. basis {φn}∞n=1 is in S. However, for such a basis ‖φm − φn‖ =

√
2,

n 6= m. Again, this means there are no Cauchy subsequences in {φn}∞n=1,
and consequently, no convergent subsequences. Thus, S is not compact.
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2 Compact Operators

Definition 2.1. Let K : H → H be linear. K is said to be compact if
and only if K maps bounded sets into precompact sets. Equivalently, K is
compact if and only if for every bounded sequence {vn}∞n=1 in H the sequence
{Kvn}∞n=1 has a convergent subsequence. We denote the set of compact
operators on H by C(H).

Proposition 2.2. If K ∈ C(H), then K is bounded – i.e., C(H) ⊂ B(H).
In addition, C(H) is a subspace of B(H).

Proof. We leave this as an exercise for the reader.

We now turn to giving some examples of compact operators. We start
with the finite-rank operators. If the range of a bounded operator K is finite
dimensional, then we say that K is a finite-rank operator.

Proposition 2.3. Every finite-rank operator K is compact.

Proof. The range of K is finite dimensional, so every bounded subset of the
range is precompact. Let S ⊆ {f ∈ H : ‖f‖ ≤ C}, where C is fixed. Note
that the range of K restricted to S is also bounded: ‖Kf‖ ≤ ‖K‖op‖f‖ ≤
C‖K‖op. Thus, K maps a bounded set S into a bounded subset of a finite
dimensional subspace of H, which is itself precompact. Hence, K is thus
compact.

To describe K explicitly, let {φk}nk=1 be a basis for R(K). Then, Kf =∑n
k=1 akφk. We want to see how the ak’s depend on f . Consider 〈Kf, φj〉 =

〈f,K∗φj〉 =
∑n

k=1 ak〈φk, φj〉. Next let ψj = K∗φj , so that 〈f,K∗φj〉 =
〈f, ψj〉. Because {φk}nk=1 is a basis, it is linear independent. Hence, the
Gram matrix Gj,k = 〈φk, φj〉 is invertible, and so we can solve the system of
equations 〈f, ψj〉 =

∑n
k=1Gj,kak. Doing so yields ak =

∑n
j=1(G

−1)k,j〈f, ψj〉.
The ak’s are obviously linear in f . Of course, a different basis will give a
different representation.

Let H = L2[0, 1]. A particularly important set of finite rank opera-
tors in C(H) are ones given by finite rank or degenerate kernels, k(x, y) =∑n

k=1 φk(x)ψk(y), where the functions involved are in L2. The operator

is then Kf(x) =
∫ 1
0 k(x, y)f(y)dy. In the example that we did for re-

solvents, the kernel was k(x, y) = xy2, and the operator was Ku(x) =∫ 1
0 k(x, y)u(y)dy. Later, we will show that the Hilbert-Schmidt kernels also

yield compact operators. Before, we do so, we will discuss a few more prop-
erties of compact operators.
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Lemma 2.4. Let {φn}∞n=1 be an o.n. set in H and let K ∈ C(H). Then,
limn→∞Kφn = 0.

Proof. Suppose not. Then we may select a subsequence {φm} of {φn}∞n=1

for which ‖Kφm‖ ≥ α > 0 for all m. Because K is compact, we can also
select a subsequence {φk} of {φm} for which {Kφk} is convergent to ψ ∈ H.
Now, {φk} being a subsequence of {φm} implies that ‖Kφk‖ ≥ α > 0.
Taking the limit in this inequality yields ‖ψ‖ ≥ α > 0. Next, note that
limk→∞〈Kφk, ψ〉 = ‖ψ‖2. However, limk→∞〈Kφk, ψ〉 = limk→∞〈φk,K∗ψ〉 =
0, by Bessel’s inequality. Thus, ‖ψ‖2 = 0, which is a contradiction.

This lemma is a special case of a more general result. We say that a
sequence {fn} is weakly convergent to a f ∈ H if and only if for all g ∈ H we
have limn→∞〈fn, g〉 = 〈f, g〉. For example, the o.n. set in the lemma weakly
converges to 0.

There are two important facts concerning weak convergence1. The first
is that weakly convergent sequences are bounded and the second is that every
bounded sequnce has a weakly convergent subsequence.

Proposition 2.5. Let {fn} weakly converge to f ∈ H. If K ∈ C(H), then
limn→∞Kfn = Kf . That is, K maps weakly convergent sequences into
“strongly” convergent ones.

Proof. The proof is similar to that of Lemma 2.4. Suppose not. Then there
exists ε > 0 and a subsequence {fnk

} such that ‖Kfnk
− Kf‖ ≥ ε > 0.

Because K ∈ C(H), we may select a subsequence of {fnk
}, fnkj

=: f̃j ,

such that Kf̃j converges to ψ. From the inequality above, we have that

‖ψ −Kf‖ ≥ ε. We can use this and the weak convergence of Kf̃j to arrive
at a contradiction. We leave the details as an exercise.

We remark that the converse is true, too. This leads to an alternative
characterization of compact operators: K is compact if and only if K maps
weakly convergent sequences into strongly convergent ones. See the book
Functional Analysis, by F. Riesz and B. Sz.-Nagy.

Our next result is one of the most important theorems in the theory of
compact operators.

Theorem 2.6. C(H) is a closed subspace of B(H).

1See Riesz-Nagy, p. 64.
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Proof. Suppose that {Kn}∞n=1 is a sequence in C(H) that converges to K ∈
B(H), in the operator norm. We want to show that K is compact. Assume
the {vk} is a bounded sequence in H, with ‖vk‖ ≤ C for all k. Compactness
will follow if we can prove that {Kvk} has a convergent subsequence. The
technique for doing this is often called a diagonalization argument. We
start with the full sequence and form {K1vk}. Since K1 is compact, we can

select a subsequence {v(1)k } such that {K1v
(1)
k } is convergent. We may carry

out the same procedure with {K2v
(1)
k }, selecting a subsequence of {K2v

(1)
k }

that is convergent. Call it {v(2)k }. Since this is a subsequence of {v(1)k },
{K1v

(2)
k } is convergent. Continuing in this way, we construct subsequences

{v(j)k } for which {Kmv
(j)
k } is convergent for all 1 ≤ m ≤ j. Next, we let

{uj := v
(j)
j }, the “diagonal” sequence. This is a subsequence of all of the

{v(j)k }’s. Consequently, for n fixed, {Knuj}∞j=1 will be convergent. To finish
up, we will use an “up, over, and around” argument. Note that for all `,m,

‖Ku` −Kum‖ ≤ ‖Ku` −Knu`‖+ ‖Knu` −Knum‖+ ‖Knum −Kum‖

Since ‖Ku` − Knu`‖ ≤ ‖K − Kn‖op‖u`‖ ≤ C‖K − Kn‖op and, similarly,
‖Kum − Knum‖ ≤ C‖K − Kn‖op, so ‖Ku` − Kum‖ ≤ 2C‖K − Kn‖op +
‖Knu` − Knum‖. Let ε > 0. First choose N such that for n ≥ N , ‖K −
Kn‖op < ε/(4C). Fix n. Because {Knu`} is convergent, it is Cauchy. Choose
N ′ so large that ‖Knu` − Knum‖ < ε/2 for all `,m ≥ N ′. Putting these
two together yields ‖Ku` −Knu`‖ < ε, provided `,m ≥ N ′. Thus {Ku`} is
Cauchy and therefore convergent.

Corollary 2.7. Hilbert-Schmidt operators are compact.

Proof. Let H = L2[0, 1] and suppose k(x, y) ∈ L2(R), R = [0, 1] × [0, 1].
The associated Hilbert-Schmidt operator is Ku =

∫ 1
0 k(x, y)u(y)dy. Let

{φn}∞n=1 be an o.n. basis for L2[0, 1]. With a little work, one can show that
{φn(x)φm(y)}∞n,m=1 is an o.n. basis2 for L2(R). Also, from Proposition 2 in
the notes on Bounded Operators & Closed Subspaces, we have that ‖K‖op ≤
‖k‖L2(R). Expand k(x, y) in the o.n. basis {φn(x)φm(y)}∞n,m=1:

k(x, y) =
∞∑

n,m=1

αm,nφn(x)φm(y), αm,n = 〈k(x, y), φn(x)φm(y)〉L2(R)

2See Keener, Theorem 3.5
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Next, let kN (x, y) =
∑N

n,m=1 αm,nφn(x)φm(y) and also KN be the finite rank

operator KNu(x) =
∫ 1
0 kN (x, y)u(y)dy. By Parseval’s theorem, we have that

‖k − kN‖2L2(R) =
∞∑

m=1

∞∑
n=1

|αm,n|2 −
N∑

m=1

N∑
n=1

|αm,n|2

=
∞∑

m=N+1

∞∑
n=1

|αm,n|2 +
N∑

m=1

∞∑
n=N+1

|αm,n|2

≤
∞∑

m=N+1

∞∑
n=1

|αm,n|2 +
∞∑

n=N+1

∞∑
m=1

|αm,n|2.

Both terms go to 0 as N → ∞. To make this clear, let ã2m =
∑∞

n=1 a
2
m,n.

Because
∑∞

m=1 ã
2
m =

∑∞
m=1

∑∞
n=1 |αm,n|2, the series

∑∞
m=1 ã

2
m is absolutely

convergent; consequently, limN→∞
∑∞

m=N+1 ã
2
m = 0. Using this for both

terms in the inequality implies that limN→∞ ‖k − kN‖2L2(R) = 0. As we

mentioned above, ‖K −KN‖op ≤ ‖k − kN‖L2(R), so

lim
N→∞

‖K −KN‖op = 0.

Thus K is the limit in B(L2[0, 1]) of finite rank operators, which are compact.
By Theorem 2.6 above, K is also compact.

We now turn to some of the algebraic properties of C(H).

Proposition 2.8. Let K ∈ C(H) and let L ∈ B(H). Then both KL and
LK are in C(H).

Proof. Let {vk} be a bounded sequence in H. Since L is bounded, the
sequence {Lvk} is also bounded. Because K is compact, we may find a
subsequence of {KLvk} that is convergent, so KL ∈ C(H). Next, again
assuming {vk} is a bounded sequence in H, we may extract a convergent
subsequence from {Kvk}, which, with a slight abuse of notation, we will
denote by {Kvj}. Because L is bounded, it is also continuous. Thus {LKvj}
is convergent. It follows that LK is compact.

Proposition 2.9. K is compact if and only if K∗ is compact.

Proof. Because K is compact, it is bounded and so is its adjoint K∗, in fact
‖K∗‖op = ‖K‖op. By Proposition 2.8, we thus have that KK∗ is compact.
It follows that if {un} is a bounded sequence in H, then we may extract a
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subsequence of {un}, denoted by {vj}, such that {KK∗vj} is convergent.
This of course means that this sequence is also Cauchy. Note that

〈KK∗(vj − vk), vj − vk〉 = 〈K∗(vj − vk),K∗(vj − vk)〉 = ‖K∗(vj − vk)‖2.

From this and the fact that {vj}, being a subsequence of the bounded
sequence {un}, is itself bounded, we see that 〈KK∗(vj − vk), vj − vk〉 ≤
‖vj − vk‖ ‖KK∗(vj − vk)‖ ≤ C‖KK∗(vj − vk)‖. Thus,

‖K∗(vj − vk)‖2 ≤ C‖KK∗(vj − vk)‖

Since {KK∗vj} is Cauchy, for every ε > 0, we can find N such that whenever
j, k ≥ N , ‖KK∗(vj − vk)‖ < ε2/C. It follows that ‖K∗(vj − vk)‖ < ε, if
j, k ≥ N . This implies that {K∗vj} is Cauchy and therefore convergent.

We want to put this in more algebraic language. Taking L to be compact
in Proposition 2.8, we have that the product of two compact operators is
compact. Since C(H) is already a subspace, this implies that it is an algebra.
Moreover, by taking L to be just a bounded operator, we have that C(H)
is a two-sided ideal in the algebra B(H). Since K being compact implies
K∗ is compact, C(H) is closed under the operation of taking adjoints; thus,
C(H) is a ∗-ideal. Finally, by Theorem 2.6, we have that C(H) is a closed
subspace of B(H). We summarize these results as follows.

Theorem 2.10. C(H) is a closed, two-sided, ∗-ideal in B(H).

We remark that a closed *-algebra in B(H) is called a C*-algebra. So,
C(H) is a C*-algebra that is also a two-sided ideal in B(H).

Previous: Example of the Fredholm alternative and resolvent

Next: the closed range theorem
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