Coordinates and Bases

Coordinate maps. This is a brief discussion of bases and the coordinates corresponding to them. We begin with a vector space V that has the ordered basis basis $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. If $\mathbf{v} \in V$, then we can always express $\mathbf{v} \in V$ in exactly one way as a linear combination of the the vectors in B. Specifically, for any $\mathbf{v} \in V$ there are unique scalars x_{1}, \ldots, x_{n} such that

$$
\begin{equation*}
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n} . \tag{1}
\end{equation*}
$$

The x_{j} 's are the coordinates of \mathbf{v} relative to B. We collect them into the coordinate vector

$$
[\mathbf{v}]_{B}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Because, relative to B, the coordinates of \mathbf{v} are uniquely specified, we may define a map $K_{B}: V \rightarrow \mathbb{C}^{n}$ (or \mathbb{R}^{n}) via

$$
K_{B}(\mathbf{v})=[\mathbf{v}]_{B} .
$$

We will call K_{B} the coordinate map relative to B. It is easy to see that K_{B} is linear and has the inverse

$$
K_{B}^{-1}(\mathbf{x})=\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n},
$$

where the x_{j} 's are coordinates of \mathbf{v}.
Examples. Here are some examples. Let $V=\mathcal{P}_{2}$ and $B=\left\{1, x, x^{2}\right\}$. What is the coordinate vector $\left[5+3 x-x^{2}\right]_{B}$? Answer:

$$
\left[5+3 x-x^{2}\right]_{B}=\left(\begin{array}{c}
5 \\
3 \\
-1
\end{array}\right)
$$

If we ask the same question for $\left[5-x^{2}+3 x\right]_{B}$, the answer is the same, because to find the coordinate vector we have to order the basis elements so that they are in the same order as B.

Let's turn the question around. Suppose that we are given

$$
[p]_{B}=\left(\begin{array}{c}
3 \\
0 \\
-4
\end{array}\right)
$$

then what is p ? Answer: $p(x)=3 \cdot 1+0 \cdot x+(-4) \cdot x^{2}=3-4 x^{2}$.
Let's try another space. Let $V=\operatorname{span}\left\{e^{t}, e^{-t}\right\}$, which is a subspace of $C(-\infty, \infty)$. Here, we will take $B=\left\{e^{t}, e^{-t}\right\}$. What are coordinate vectors for $\sinh (t)$ and $\cosh (t)$? Solution: Since $\sinh (t)=\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}$ and $\cosh (t)=\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}$, these vectors are

$$
[\sinh (t)]_{B}=\binom{\frac{1}{2}}{-\frac{1}{2}} \quad \text { and } \quad[\cosh (t)]_{B}=\binom{\frac{1}{2}}{\frac{1}{2}} .
$$

Matrices for linear transformations. The matrix that represents a linear transformation $L: V \rightarrow W$, where V and W are vector spaces with bases $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $D=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$, respectively, is easy to get.

Let \mathbf{e}_{k} be the $n \times 1$ column vector having 1 as its $k^{\text {th }}$ entry and zeros for the other entries. Recall the $A_{L} e_{k}$ is the $k^{t h}$ column of A_{L}, so we have that

$$
A_{L} \mathbf{e}_{k}=K_{D} \circ L \circ K_{B}^{-1}\left(\mathbf{e}_{k}\right)=K_{D}\left(L\left(v_{k}\right)\right)=\left[L\left(v_{k}\right)\right]_{D}
$$

From this we we see that

$$
A_{L}=\left(\left[L\left(v_{1}\right)\right]_{D}\left[L\left(v_{2}\right)\right]_{D} \cdots\left[L\left(v_{n}\right)\right]_{D}\right)=\left(\left[L(\text { B-basis }]_{D}\right) .\right.
$$

In words, to find A_{L}, we first apply L to the B basis vectors, and then find the D coordintes of the result.

A matrix example. Let $V=W=\mathcal{P}_{2}, B=D=\left\{1, x, x^{2}\right\}$, and $L(p)=$ $\left(\left(1-x^{2}\right) p^{\prime}\right)^{\prime}$. To find the matrix A that represents L, we first apply L to each of the basis vectors in B.

$$
L(1)=0, L(x)=-2 x, \text { and } L\left(x^{2}\right)=2-6 x^{2} .
$$

Next, we find the D-basis coordinate vectors for each of these. Since $B=D$ here, we have

$$
[0]_{D}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad[-2 x]_{D}=\left(\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right) \quad\left[2-6 x^{2}\right]_{D}=\left(\begin{array}{c}
2 \\
0 \\
-6
\end{array}\right),
$$

and so the natrix that represents L is ss

$$
A_{L}=\left(\begin{array}{ccc}
0 & 0 & 2 \\
0 & -2 & 0 \\
0 & 0 & -6
\end{array}\right)
$$

Suppose that we wanted to solve the eigenvalue problem, $L(p)=\lambda p$. This equation is equivalent to the matrix equation $A_{L}[p]_{B}=\lambda[p]_{B}$, which is a standard eigenvalue problem. Solving that problem results in three eigenvalues, $0,-2,-6$ and three corresponding eigenvectors, $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T},\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$, $(-1 / 203 / 2)^{T}$. These are coordinates of the eigenvectors. The eigenvectors in polynomial form are $K_{B}^{-1}\left(\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}\right)=1, K_{B}^{-1}\left(\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}\right)=x$, $K_{B}^{-1}\left((-1 / 203 / 2)^{T}\right)=\left(3 x^{2}-1\right) / 2$. These are the first three Legendre polynomials, $P_{0}=1, P_{2}=x, P_{3}=\frac{3 x^{2}-1}{2}$.

Changing bases and coordinates. We are frequently faced with the problem of replacing a set of coordinates relative to one basis with a set for another. Let $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $D=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ be bases for an n dimensional vector space V. If $\mathbf{v} \in V$, then it has coordinate vectors relative to each basis, $\mathbf{x}=[\mathbf{v}]_{B}$ and $\boldsymbol{\xi}=[\mathbf{v}]_{D}$. This means that

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}=\xi_{1} \mathbf{w}_{1}+\xi_{2} \mathbf{w}_{2}+\cdots+\xi_{n} \mathbf{w}_{n} .
$$

Suppose that we know \mathbf{x} and that we want $\boldsymbol{\xi}$. First, observe that $\mathbf{v}=$ $K_{B}^{-1}(\mathbf{x})$ and $\boldsymbol{\xi}=K_{D}(\mathbf{v})$. Putting these two together then yields

$$
\boldsymbol{\xi}=K_{D} \circ K_{B}^{-1}(\mathbf{x})=S_{B \rightarrow D} \mathbf{x}
$$

The same argument ${ }^{-1}$ that we used to get A_{L}, the matrix of L, we obtain

$$
\begin{equation*}
S_{B \rightarrow D}=K_{D} \circ K_{B}^{-1}=\left[[B \text { basis }]_{D}\right], \tag{3}
\end{equation*}
$$

which is the transition matrix from B coordinates to D coordinates. Of course, $S_{D \rightarrow B}$, the transition matrix from D to B coordinates, is

$$
S_{D \rightarrow B}=K_{B} \circ K_{D}^{-1}=\left[[D \text { basis }]_{B}\right]=S_{B \rightarrow D}^{-1} .
$$

We want come back to what this means for bases. When we change bases from B to D, we are replacing every \mathbf{v}_{k} with a linear combination of

[^0]\mathbf{w}_{j} 's, which we can get from $\left[\mathbf{v}_{k}\right]_{D}$, the coordinates of \mathbf{v}_{k} in the D basis. In terms of $S=S_{B \rightarrow D}$, we have
$$
\left[\mathbf{v}_{k}\right]_{D}=\left(S_{1, k} S_{2, k} \cdots S_{n, k}\right)^{T}
$$

Consequently,

$$
\mathbf{v}_{k}=\sum_{j=1}^{n} S_{j, k} \mathbf{w}_{j}=\sum_{j=1}^{n}\left(S^{T}\right)_{k, j} \mathbf{w}_{j} .
$$

If we let $\mathbf{v}=\left(\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{n}\right)^{T}$ and $\mathbf{w}=\left(\mathbf{w}_{1} \mathbf{w}_{2} \cdots \mathbf{w}_{n}\right)^{T}$, then we arrive at

$$
\mathbf{v}=S^{T} \mathbf{w}
$$

We can use this to get the transition matrix in the following example. If $V=\mathcal{P}_{2}$ and $B=\left\{1-x, 1+x, 1-2 x+x^{2}\right\}$ and $D=\left\{1, x, x^{2}\right\}$, then

$$
\underbrace{\left(\begin{array}{c}
1-x \\
1+x \\
1-2 x+x^{2}
\end{array}\right)}_{\mathbf{v}}=\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
1 & -2 & 1
\end{array}\right)}_{S^{T}} \underbrace{\left(\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right)}_{\mathbf{w}} .
$$

From this we obtain the transition matrix

$$
S=S_{B \rightarrow D}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)
$$

To get the transition matrix for $D \rightarrow B$, we just invert $S_{B \rightarrow D}$.

$$
S_{D \rightarrow B}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & -2 \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -3 / 2 \\
0 & 0 & 1
\end{array}\right)
$$

Just to finish this example, we see that

$$
\left(\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
1 / 2 & -3 / 2 & 1
\end{array}\right)}_{S_{D \rightarrow B}^{T}}\left(\begin{array}{c}
1-x \\
1+x \\
1-2 x+x^{2}
\end{array}\right)
$$

QR factorization. We can use the techniques above to prove an important result that is frequently used in numerical analysis.

Proposition 0.1. Let A be an $m \times n$ matrix, $m \geq n$, such that the columns of A are linearly independent. Then, there exists an $m \times n$ matrix Q, whose columns are orthonormal, and an $n \times n$ upper triangular matrix R, with positive diagonal entries, such that $A=Q R$.

Proof. See the paragraph in my notes on innerproduct spaces, $\mathbf{Q R}$ factorization.

As a simple example, consider the matrix

$$
A=\left(\begin{array}{cc}
1 & 2 \\
0 & -1 \\
1 & 1
\end{array}\right)
$$

The matrix Q has columns obtained by applying the Gram-Schmidt process to the columns of A. To find R see the method outlined in the notes mentioned in the proof above. Q and R are given below.

$$
Q=\left(\begin{array}{cc}
\sqrt{2} / 2 & \sqrt{6} / 6 \\
0 & -\sqrt{6} / 3 \\
\sqrt{2} / 2 & -\sqrt{6} / 6
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{cc}
\sqrt{2} & 3 \sqrt{2} / 2 \\
0 & \sqrt{6} / 2
\end{array}\right)
$$

Matrices for L in different bases. Let the bases B and $\underset{\sim}{\sim}$ be as above, and suppose that A_{L} is the matrix for L relative to B and \widetilde{A}_{L} be the one for D. We want to relate the two matrices. First, note that we have $A_{L}=$ $K_{B} \circ L \circ K_{B}^{-1}$, and $\widetilde{A}_{L}=K_{D} \circ L \circ K_{D}^{-1}$. Since $K_{B}^{-1} \circ K_{B}=I$, the identity operator on V, we have

$$
\begin{equation*}
\tilde{A}_{L}=\underbrace{K_{D} \circ K_{B}^{-1}}_{S_{B \rightarrow D}} \circ \underbrace{K_{B} \circ L \circ K_{B}^{-1}}_{A_{L}} \circ \underbrace{K_{B} \circ K_{D}^{-1}}_{S_{D \rightarrow B}}=S_{B \rightarrow D} A_{L} S_{D \rightarrow B} . \tag{4}
\end{equation*}
$$

Freuqently, we let $S=S_{D \rightarrow B}$, so $S_{B \rightarrow D}=S^{-1}$. In this notation

$$
\begin{equation*}
\widetilde{A}_{L}=S^{-1} A_{L} S \tag{5}
\end{equation*}
$$

The matrices in (5) are similar. In fact, any matrix A represents L in some basis if and only if it is similar to A_{L}.
Previous: inner products and norms
Next: review of diagonalization

[^0]: ${ }^{1}$ In fact, if $L=I$, the identity operator, then $A_{I}=K_{D} \circ I \circ K_{B}^{-1}=K_{D} \circ K_{B}^{-1}$. Thus the formula in (3) is in fact a special case of (22).

