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Example 0.1. Show that if T ∈ D′ and T ′ = 0, then T = C, where C is a
constant

Solution. Since T ′ = 0, we have that 〈T ′, φ〉 = 0 for all φ ∈ D. Thus,

〈T, φ′〉 = −〈T ′, φ〉 = 0.

The equation 〈T, φ′〉 = 0 is not enough to determine T . The reason is that to
know what T is, we have to have its value 〈T, φ〉 for every φ ∈ D. However,
we only know its value on derivatives of functions in D. Unfortunately, this
isn’t enough, because there are functions in D that are not derivatives test
functions. For example, the standard “bump” function,

φ0 =

{
e−(1−x

2)−1 |x| < 1

0 |x| ≥ 1
,

is not the derivative of a test function: Any anti-derivative of φ0 will never
have compact support. (Why?)

To get around this problem, we have to characterize all test functions
that are derivatives of test functions. Once we do this, we will use a trick to
get 〈T, φ〉 for all φ ∈ D. Suppose that χ = φ′ for some φ ∈ D. Since φ has
support on a finite interval [a, b], we have that

∫∞
−∞ χ(x)dx = φ(b)− φ(a) =

0− 0 = 0. The converse of this is also true; namely,
∫∞
−∞ χ(x)dx = 0 implies

that χ = φ′ for some (unique) φ. Just define φ to be

φ(x) =

∫ x

−∞
χ(t)dt.

It’s easy to check that φ ∈ D. If the support of χ = [a, b], then when

x < a,
∫ x
−∞ χ(t)dt =

∫ x
−∞ 0dt = 0. When x > b,

∫ x
−∞ χ(t)dt =

∫ b
−∞ χ(t)dt+∫ x

b χ(t)dt =
∫ b
−∞ χ(t)dt+ 0 =

∫∞
−∞ χ(x)dx = 0. Hence, χ = φ′ if and only if∫∞

−∞ χ(x)dx = 0.

Next comes our trick. First, let c0 =
∫∞
−∞ φ0(x)dx =

∫ 1
−1 e

−(1−x2)−1
dx.

By construction, c−10

∫∞
−∞ φ0(x)dx = c0/c0 = 1. Second, let ψ be an arbi-

trary test function and define

χ(x) := ψ(x)−
(∫ ∞
−∞

ψ(t)dt

)
φ0(x)/c0. (1)
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We have that χ ∈ D because it is a linear combination of test functions.
Third, note that∫ ∞

−∞
χ(x)dx =

∫ ∞
−∞

ψ(x)dx−
(∫ ∞
−∞

ψ(x)dx

)(∫ ∞
−∞

(φ0(t)/c0)dt

)
=

∫ ∞
−∞

ψ(x)dx−
(∫ ∞
−∞

ψ(x)dx

)
· 1 = 0.

By what we just said, χ = φ′, for some φ. Therefore,

φ′ = ψ − 〈1, ψ〉φ0/c0, where 〈1, ψ〉 =

∫ ∞
−∞

ψ(t)dt

and so ψ = φ′ + 〈1, ψ〉φ0/c0. Finally, apply T to both sides to get

〈T, ψ〉 = 〈T, φ′〉︸ ︷︷ ︸
0

+ 〈T, φ0/c0〉︸ ︷︷ ︸
C

〈1, ψ〉 = 〈C,ψ〉.

Since φ0/c0 is a specific function, C = 〈T, φ0〉/c0 is a constant that is inde-
pendent of ψ. The equation above then implies that T = C.

Example 0.2. Find all u ∈ D′ that solve x2u′ = 0, in the sense of distri-
butions.

Solution. The equation x2u′ = 0 implies that 0 = 〈x2u′, φ〉 = 〈u, (x2φ)′〉.
We begin by finding all χ ∈ D such that χ(x) = (x2φ(x))′ for some φ ∈ D.
Integrating this equation yields x2φ(x) =

∫ x
0 χ(t)dt. Since φ has compact

support in an interval [a, b], x > b implies that
∫∞
0 χ(t)dt =

∫ b
0 χ(t)dt =

b2φ(b) = 0. Similarly,
∫ 0
−∞ χ(t)dt =

∫ 0
a χ(t)dt = −a2φ(a) = 0. Differenti-

ating x2φ(x) =
∫ x
0 χ(t)dt yields 2xφ(x) + x2φ′(x) = χ(x). Setting x = 0

then results in χ(0) = 0. Putting these together, we see that χ satisfies the
following (necessary) conditions:∫ 0

−∞
χ(x)dx =

∫ ∞
0

χ(x)dx = 0, and χ(0) = 0. (2)

These are also sufficient. To see this, we must show that if χ ∈ D satisfies
(2), then

φ(x) :=

{
x−2

∫ x
0 χ(t)dt, x 6= 0

1
2χ
′(0), x = 0.

(3)

is in D. Because χ ∈ D, it has support in a finite interval [a, b]. Thus we, for
x > b, have φ(x) = x−2

∫ x
0 χ(t)dt = x−2

∫∞
0 χ(t)dt = x−2 · 0 = 0. The same
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argument also gives φ(x) = 0 for x < a. Thus, φ has compact support. All
that is left to get that φ is in D is showing that φ ∈ C∞. The only place
where φ is not clearly C∞ is at x = 0. In a neighborhood of x = 0, we use
Taylor’s Theorem plus remainder to represent χ:

χ(x) = χ(0)︸︷︷︸
0

+χ′(0)x+
1

2
χ′′(0)x2 · · ·+ χ(n+1)(0)

(n+ 1)!
xn+1 +Rn+1(x), (4)

where Rn+1(x) =
∫ x
0
χ(n+2)(t)
(n+1)! (x − t)n+1dt = O{xn+2}. Integrating (4) and

multiplying by x−2, we see that

φ(x) := x−2
∫ x

0
χ(t)dt =

1

2
χ′(0) +

1

6
χ′′(0)x · · ·+ χ(n+1)(0)

(n+ 2)!
xn +O{xn+1},

from which it follows that at x = 0 the nth derivative of φ is φ(n)(0) =
χ(n+1)(0)
(n+2)! . Since n is arbitrary, φ is infinitely differentiable at 0. Consequently,
φ is C∞ everywhere, and, because it has compact support, φ ∈ D.

The trick that we used above in (1) can also be used here. Let φ0
be the bump function defined previously. Define φ1(x) := φ0(x − 1) and
φ2(x) := φ0(x+ 1). These functions have supports [0, 2] and [−2, 0], respec-
tively. Thus, φ1(0) = φ2(0) = 0. In addition,

∫∞
0 φ1(x)dx =

∫∞
−∞ φ1(x)dx =∫∞

−∞ φ0(x)dx = c0. Similarly,
∫∞
−∞ φ2(x)dx = c0. Of course, because of the

supposrts of φ1, φ2, we also have
∫ 0
−∞ φ1(x)dx =

∫∞
0 φ2(x)dx = 0. Next, let

ψ ∈ D and define

χ(x) := ψ(x)− ψ(0)
(
eφ0(x)−(e/2)φ1(x)− (e/2)φ2(x)

)
−(φ1(x)/c0)

∫ ∞
0

ψ(t)dt−(φ2(x)/c0)

∫ 0

−∞
ψ(t)dt.

It is easy to check that χ satisfies the conditions in (2). Thus, there exists
φ ∈ D such that (x2φ(x))′ = χ(x), and so 〈x2u′, φ〉 = 〈u, (x2φ(x))′〉 =
〈u, χ〉 = 0. Hence,

0 = 〈u, ψ〉− 〈u, eφ0 − (e/2)φ1 − (e/2)φ2〉︸ ︷︷ ︸
a0

ψ(0)− 〈u, c−10 φ1〉︸ ︷︷ ︸
a1

∫ ∞
0

ψ(t)dt

−〈u, c−10 φ2〉︸ ︷︷ ︸
a2

∫ 0

−∞
ψ(t)dt.

This result yields u = a0δ(x) + a1H(x) + a2H(−x), where a0, a1, a2 are
arbitrary and H(x) is the Heaviside step function.

Previous: spectral theory
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