A Resolvent Example

by
Francis J. Narcowich
November, 2014
Problem. Let $k(x, y)=x y^{2}, K u(x)=\int_{0}^{1} k(x, y) u(y) d y$, and $L u=u-\lambda K u$. Assume that L has closed range.

1. Determine the values of λ for which $L u=f$ has a solution for all f. Solve $L u=f$ for these values of λ.
2. For the remaining values of λ, find a condition on f that guarantees a solution to $L u=f$. When f satisfies this condition, solve $L u=f$.

Solution. (1) Because $R(L)$ is closed, the Fredholm alternative applies. We begin by finding $N\left(L^{*}\right)$. First, we have that $L^{*}=I-\bar{\lambda} K^{*}$, where $K^{*} w=\int_{0}^{1} k(y, x) w(y) d y=\int_{0}^{1} y x^{2} w(y) d y$. We want to find all w for which $L^{*} w=w-\bar{\lambda} \int_{0}^{1} x^{2} y w(y) d y=0$. Note that $w=\bar{\lambda} x^{2} \int_{0}^{1} y w(y) d y$, so $w=C x^{2}$. Putting this back into the equation for w yields $C x^{2}=\bar{\lambda} C x^{2} \int_{0}^{1} y^{2} y d y=$ $C(\bar{\lambda} / 4) x^{2}$. Thus, $C=(\bar{\lambda} / 4) C$. If $\bar{\lambda} / 4 \neq 1$, then $C=0$ and $N\left(L^{*}\right)=\{0\}$. Thus, if $\bar{\lambda} / 4 \neq 1$ - i.e., $\lambda \neq 4, L u=f$ has a solution for all $f \in L^{2}[0,1]$.

To find u, note that $u-\lambda x \int_{0}^{1} y^{2} u(y) d y=f$, and so we only need to find $\int_{0}^{1} y^{2} u(y) d y$. The trick for doing this is to multiply $L u=f$ by x^{2} and then integrate. Doing this results in $\int_{0}^{1} y^{2} u(y) d y-\frac{\lambda}{4} \int_{0}^{1} y^{2} u(y) d y=\int_{0}^{1} y^{2} f(y) d y$. From this we get $\int_{0}^{1} y^{2} u(y) d y=\frac{1}{1-\lambda / 4} \int_{0}^{1} y^{2} f(y) d y$. Finally, we arrive at

$$
u(x)=f(x)+\frac{4 \lambda}{4-\lambda} x \int_{0}^{1} y^{2} f(y) d y=f(x)+\frac{4 \lambda}{4-\lambda} K f(x) .
$$

In operator form,

$$
(I-\lambda K)^{-1}=I+\frac{4 \lambda}{4-\lambda} K
$$

The operator $(I-\lambda K)^{-1}$ is called the resolvent of K.
(2) When $\lambda=4, N\left(L^{*}\right)=\operatorname{span}\left\{x^{2}\right\}$. By the Fredholm alternative, $L u=f$ has a solution if and only if $\int_{0}^{1} x^{2} f(x) d x=0$. To solve $u-$ $4 x \int_{0}^{1} y^{2} u(y) d y=f$ for u, we first note that $\int_{0}^{1} y^{2} u(y) d y$ is not determined, because $\int_{0}^{1} y^{2} u(y) d y-\frac{4}{4} \int_{0}^{1} y^{2} u(y) d y=\int_{0}^{1} y^{2} f(y) d y=0$. This really just says that we have consistency. The constant $C=\int_{0}^{1} y^{2} u(y) d y$ is thus arbitrary, and $u(x)=f(x)+C x$.
Previous: Projection Theorem, etc.
Next: compact operators

