Splines and Finite Element Spaces

Francis J. Narcowich

October 2014*

1 Splines

Splines are piecewise polynomial functions that have certain "regularity" properties. These can be defined on all finite intervals, and intervals of the form $(-\infty, a],[b, \infty)$ or $(-\infty, \infty)$.

We have already encountered linear splines, which are simply continuous, piecewise-linear functions. More general splines are defined similarly to the linear ones. They are labeled by three things: (1) a knot sequence, Δ; (2) the degree k of the polynomial; and, (3) the space C^{r}, the level of differentiability of the whole spline. The knot sequence is where the polynomial may change. For a linear spline defined on $[0,1]$, the knot sequence $\Delta=\left\{x_{0}=0<x_{1}<\right.$ $\left.x_{2}<\cdots<x_{n}=1\right\}$ is where one linear polynomial meets another. Since the polynomials are linear, $k=1$. Finally, since the linear splines are continuous, they are in $C^{0}[0,1]$, so $r=0$.

Definition 1.1. We denote the set of splines having knot sequence Δ, degree of polynomial k, and smoothness C^{r} by $S^{\Delta}(k, r)$.

There is a special case in which $k=0$ and $r=-1$. These are just step functions. Since the polynomials are taken to be constants, $k=0$. Letting $r=-1$ simply means that the step function is discontinuous at the knots.

With Δ, k, and r fixed, $S^{\Delta}(k, r)$ is a vector space, which may be finite dimensional or infinitely dimensional. This raises the issue of bases for the spaces.

1.1 Basis Splines - B-Splines

We begin with the following useful notation. The function below is called the plus function, for obvious reasons.

[^0]\[

(x)_{+}= $$
\begin{cases}x & x \geq 0 \\ 0 & x<0\end{cases}
$$
\]

The plus function is a linear spline, with $\Delta=\mathbb{Z}, k=1$, and $r=0$. (We remark that the only place the linear function changes is at $x=0$.) It s defined over \mathbb{R}. With it in hand, we can define the order $m=2$ cardinal B-spline:

$$
\begin{equation*}
N_{2}(x)=(x)_{+}-2(x-1)_{+}+(x-2)_{+} . \tag{1.1}
\end{equation*}
$$

The knot sequence for N_{2} is the the set of all integers, \mathbb{Z}, although changes in the function only occur at $\{0,1,2\}$, and N_{2} is a linear spline. As the graph below shows, N_{2} is a "tent" function.

Proposition 1.2. Let Δ be an equally spaced knot sequence, with $x_{j}=\frac{j}{n}$, $j=0, \ldots, n$. Then $B=\left\{N_{2}(n x-j+1): j=0, \ldots, n\right\}$ is a basis for $S^{\Delta}(1,0)$ (the space of linear splines), provided $x \in[0,1]$.

Proof. Exercise.

[^1]Example 1.3. Consider $n=4$. Recall that the values at the corners and endpoints determine the linear spline. So, let y_{j} be given at $j=0,1,2,3,4$. Then, the interpolating spline is

$$
s(x)=\sum_{j=0}^{4} y_{j} N_{2}(4 x-j+1), \quad 0 \leq x \leq 1 .
$$

The order 1 B-spline is just a "box" of the form $N_{1}(x)=\left\{\begin{array}{ll}1 & x \in[0,1) \\ 0 & x \notin[0,1)\end{array}\right.$. It can be used to start an iteration to obtain cardinal B-splines of order $m \geq 2$ and higher. The recurrence formula to be iterated is

$$
N_{m}(x)=\frac{x}{m-1} N_{m-1}(x)+\frac{m-x}{m-1} N_{m-1}(x-1) .
$$

From the formula above, one can show that the order m B-splines, N_{m}, are in $S^{\mathbb{Z}}(m-1, m-2)$, and that the support of N_{m} is precisely $[0, m]$. This feature is important enough that is used to label them.

2 Finite Element Spaces

Let $\Delta:=\left\{x_{0}=0<x_{1}<x_{2}<\cdots<x_{n}=1\right\}$ be a knot sequence for [0, 1]. It is convenient to define the subintervals $I_{j}=\left[x_{j-1}, x_{j}\right)$, with $I_{n}=\left[x_{n-1}, 1\right]$. Let \mathcal{P}_{k} denote the set of polynomials of degree less than or equal to k. By Definition 1.1, the space of splines may be written as follows:

$$
\begin{equation*}
S^{\Delta}(k, r)=\left\{\phi:[0,1] \rightarrow \mathbb{R}:\left.\phi\right|_{I_{j}} \in \mathcal{P}_{k}\left(I_{j}\right) \text { and } \phi \in C^{(r)}([0,1])\right\} \tag{2.1}
\end{equation*}
$$

When $r=-1, \phi$ is discontinuous.
Consider an equally spaced knot sequence for $[0,1], \Delta=\{j / n: j=$ $0, \ldots, n\}$. The finite element spaces ${ }^{2} S^{\frac{1}{n}}(k, r)$ are degree k polynomials on each interval and have $r \leq k-1$ derivatives that match at the interior knots. We consider the following question: How many parameters are required to describe a function in $S^{\frac{1}{n}}(k, r)$? That is, what is the dimension of this linear space?

There are n intervals and on each interval there are $k+1$ free parameters, since the function is a degree k polynomial there. Therefore, we have $n(k+1)$ free parameters. At each of the $n-1$ knots, the polynomials must smoothly

[^2]join, so there are $r+1$ equations that must match (the polynomials across a knot must match and their r derivatives must match). This yields ($n-$ 1) $(r+1)$ constraints. Therefore, we have at least $n(k+1)-(n-1)(r+1)=$ $n(k-r)+r+1$ parameters. It follows that the dimension of $S^{\frac{1}{n}}(k, r)=$ $n(k-r)+r+1$ provided that the equations at the knots are independent (which can be shown). We summarize this below ${ }^{3}$
Proposition 2.1. $\operatorname{dim} S^{\frac{1}{n}}(k, r)=n(k-r)+r+1$.
For an example, consider $k=1, r=0$. This is the space $S^{\frac{1}{n}}(1,0)$ which has dimension $n(1-0)+0+1=n+1$. If we consider $k=m-1, r=m-2$, then the dimension $S^{\frac{1}{n}}(m-1, m-2)$ is $n(m-1-m+2)+m-2+1=n+m-1$.

3 Construction of Cubic Splines

The cubic splines in $S^{\frac{1}{n}}(3,1)$ are differentiable, piecewise cubic polynomials defined on $[0,1]$. Cubic splines can be used to simultaneously interpolate both a function and its derivatives on any set of knots $\left\{x_{j}\right\}_{j=0}^{n}$. That is, if the values $f\left(x_{j}\right)$ and $f^{\prime}\left(x_{j}\right)$ are known, then there exists a (unique) cubic spline $s \in S^{\frac{1}{n}}(3,1)$ satisfies both $s\left(x_{j}\right)=f\left(x_{j}\right)$ and $s^{\prime}\left(x_{j}\right)=f^{\prime}\left(x_{j}\right)$. Returning to $\Delta=\{j / n\}_{j=0}^{n}$, we see that, by Proposition 2.1, the dimension of $S^{\frac{1}{n}}(3,1)$, is $2 n+2$, which exactly matches the $2 n+2$ pieces of data to be fit.

We construct a basis of functions for $S^{\frac{1}{n}}(3,1)$ by first constructing two interpolating functions. Consider the interval $[0,1]$ and the problem of finding a cubic polynomial $\phi(x)$ such that $\phi(0)=1$, and $\phi(1)=\phi^{\prime}(1)=\phi^{\prime}(0)=0$. Then, a polynomial of the form

$$
\phi(x)=A(x-1)^{3}+B(x-1)^{2}
$$

satisfies $\phi(1)=\phi^{\prime}(1)=0$. Substituting the values for $\phi(0)=1$ and $\phi^{\prime}(0)=0$ yields $-A+B=1$ and $3 A-2 B=0$, which has the solution $A=2$ and $B=3$. Then, after re-arranging, we see that

$$
\phi(x)=2(x-1)^{3}+3(x-1)^{2}=(x-1)^{2}(2 x+1)
$$

We then extend the function to all of \mathbb{R} as follows:

$$
\phi(x)= \begin{cases}(|x|-1)^{2}(2|x|+1) & |x| \leq 1 \tag{3.1}\\ 0 & |x|>1,\end{cases}
$$

[^3]By construction, $\phi(0)=1$ and $\phi^{\prime}(\pm 1)=\phi^{\prime}(0)=0$. Of course, outside of $[-1,1]$, it is identically 0 . It is easy to show that $\phi \in C^{(1)}$, so $\phi \in S^{\mathbb{Z}}(3,1)$. The function ϕ will be used to interpolate the values of a function, while yielding zero derivative data on each of the knots.

We next construct a function ψ that takes zero value at the endpoints, but assumes a derivative value of one at 0 . We let ψ be the cubic function

$$
\psi(x)=A(x-1)^{3}+B(x-1)^{2}
$$

which already satisfies $\psi(1)=\psi^{\prime}(1)=0$. The condition $\psi(0)=0$ implies $A=B$ and the condition $\psi^{\prime}(0)=1$ implies $3 A-2 B=1$. Combining these conditions yields the function

$$
\psi(x)=x(x-1)^{2} .
$$

We then extend it to all of \mathbb{R} :

$$
\psi(x)= \begin{cases}x(|x|-1)^{2} & |x| \leq 1 \tag{3.2}\\ 0 & |x|>1\end{cases}
$$

As in the case of ϕ, we have $\psi \in S^{\mathbb{Z}}(3,1)$, but this time $\psi(0)=0$ and $\psi^{\prime}(0)=1$.

We now construct a set of functions that will form a basis for $S^{\frac{1}{n}}(3,1)$. We begin by changing scale in ϕ and ψ, which are defined in (3.1) and (3.2), and then translating the resulting functions. For ϕ, we define

$$
\begin{equation*}
\phi_{j}(x):=\phi(n x-j) . \tag{3.3}
\end{equation*}
$$

Notice that $\phi_{0}(x)=\phi(n x)$ and $\phi_{j}(x)=\phi\left(n\left(x-\frac{j}{n}\right)\right)=\phi_{0}\left(x-\frac{j}{n}\right)$. That is, $\phi_{j}(x)$ is $\phi_{0}(x)$ translated by $\frac{j}{n}$, that $\phi_{j}(x)$ is supported on the interval $\left[\frac{j-1}{n}, \frac{j+1}{n}\right]$, and that the conditions used to define ϕ-i.e., $\phi(0)=1, \phi^{\prime}(0)=0$ and so on - imply that $\phi_{j}(k / n)=\delta_{j, k}$ and that $\phi_{j}^{\prime}(k / n)=0$.

To construct ψ_{j} basis functions from ψ, we first consider the derivative of $\psi(n x-j)$. We note that

$$
\left.\frac{d}{d x}(\psi(n x-j))\right|_{x=\frac{j}{n}}=\left.n \psi^{\prime}(n x-j)\right|_{x=\frac{j}{n}}=n \psi^{\prime}(0)=n .
$$

From this computation, in order to have $\psi_{j}^{\prime}(k / n)=1$, must scale $\psi(n x-j)$ by n. Consequently, we define

$$
\begin{equation*}
\psi_{j}(x)=\frac{1}{n} \psi(n x-j) \tag{3.4}
\end{equation*}
$$

and we see the the support of ψ_{j} is also contained in the interval $\left[\frac{j-1}{n}, \frac{j+1}{n}\right]$. Applying the conditions imposed on ψ, we see that $\psi_{j}(k / n)=0$ and that $\psi_{j}^{\prime}(k / n)=\delta_{j, k}$.

4 Interpolation with Cubic Splines

We consider the problem of interpolating a function f and its derivative at a set of $n+1$ equally spaced knots, using the cubic splines constructed in the previous section. We begin by showing that $\left\{\phi_{j}, \psi_{j}\right\}_{j=0}^{n}$ is a basis for $S^{\frac{1}{n}}(3,1)$.

We note that there are $n+1$ of each type, which gives a total of $2 n+2$ functions in the set. Since this is the dimension of $S^{\frac{1}{n}}(3,1)$, it suffices to show that the set $\left\{\phi_{j}, \psi_{j}\right\}_{j=0}^{n}$ is linearly independent.

Consider a linear combination of the cubic splines, $s(x)=\sum_{j=0}^{n} \alpha_{j} \phi_{j}(x)+$ $\beta_{j} \psi_{j}(x)$. Using $\phi_{j}(k / n)=\delta_{j, k}, \phi_{j}(k / n)=0$ and $\psi_{j}(k / n)=0, \psi_{j}^{\prime}(k / n)=\delta_{k, j}$, we see that

$$
\begin{align*}
& s(k / n)=\sum_{j=0}^{n} \alpha_{j} \underbrace{\phi_{j}(k / n)}_{\delta_{j, k}}+\beta_{j} \underbrace{\psi_{j}(k / n)}_{0}=\alpha_{k} \tag{4.1}\\
& s^{\prime}(k / n)=\sum_{j=0}^{n} \alpha_{j} \underbrace{\phi_{j}^{\prime}(k / n)}_{0}+\beta_{j} \underbrace{\psi_{j}^{\prime}(k / n)}_{\delta_{j, k}}=\beta_{k}, \tag{4.2}
\end{align*}
$$

As usual, showing linear independence amounts to showing that $s(x) \equiv$ 0 implies that the α_{j} 's and β_{j} 's are all 0 . Note that if $s \equiv 0$, then so is s^{\prime}. Hence, the previous equation implies that $\alpha_{k}=s(k / n)=0$ and $\beta_{k}=s^{\prime}(k / n)=0$. Since the α_{j} 's and β_{j} 's are all 0 , the set $\left\{\phi_{j}, \psi_{j}\right\}_{j=0}^{n}$ is linearly independent, and hence is a basis for $S^{\frac{1}{n}}(3,1)$.

Solving the interpolation problem stated at the start of this section is now actually very easy to do; just set

$$
\begin{equation*}
s(x)=\sum_{j=0}^{n} f(j / n) \phi_{j}(x)+f^{\prime}(j / n) \psi_{j}(x) . \tag{4.3}
\end{equation*}
$$

By (4.1), we have $s(k / n)=f(k / n)$ and $s^{\prime}(k / n)=f^{\prime}(k / n)$. Hence, s in (4.3) (uniquely) solves the interpolation problem.

5 Finite Element Methods and Galerkin Methods

Consider the problem of finding the "smoothest" function in $S^{\frac{1}{n}}(3,1)$ such that at the knots $x_{j}, s\left(x_{j}\right)=f_{j}$ for $j=0, \ldots, n$. To define "smoothest", we seek a function s that minimizes

$$
\begin{equation*}
\|s\|^{2}:=\int_{0}^{1}\left(s^{\prime \prime}(x)\right)^{2} d x \tag{5.1}
\end{equation*}
$$

over all $s \in S^{\frac{1}{n}}(3,1)$ for which $s\left(x_{j}\right)=f_{j}$ for $j=0, \ldots, n$.
Since s is a piecewise cubic function, $s^{\prime \prime}$ exists and is piecewise continuous. Therefore, the equation (5.1) is well defined for all of $s \in S^{\frac{1}{n}}(3,1)$. In fact, it can be shown that 5.1) is an inner product on the set of functions in $S^{\frac{1}{n}}(3,1)$ that are zero at the endpoints.

Any function $s \in S^{\frac{1}{n}}(3,1)$ such that $s\left(x_{j}\right)=f_{j}$ can be written in the form

$$
s(x)=\sum_{j=0}^{n} f_{j} \phi_{j}(x)-\sum_{j=0}^{n} \alpha_{j} \psi_{j}(x) .
$$

Let $f=\sum_{j=0}^{n} f_{j} \phi_{j}(x)$. We seek to find coefficients α that minimize the norm of s. That is, we want to solve the problem

$$
\begin{equation*}
\min _{g \in \operatorname{span}\left(\psi_{j}\right)}\|f-g\| . \tag{5.2}
\end{equation*}
$$

This is a least-squares problem that can be dealt with by solving the associated normal equations. We expand $g=\sum_{j=0}^{n} \alpha_{j} \psi_{j}$ and we seek to find coefficients α_{j} such that

$$
\begin{equation*}
\left\langle f-g, \psi_{k}\right\rangle=0 \tag{5.3}
\end{equation*}
$$

for $k=0, \ldots, n$. Expanding g in terms of the ψ_{k} functions, we see this yields a system of equations

$$
\begin{equation*}
\sum_{j=0}^{n} \alpha_{j} \underbrace{\left\langle\psi_{j}, \psi_{k}\right\rangle}_{G_{j, k}}=\left\langle f, \psi_{k}\right\rangle \tag{5.4}
\end{equation*}
$$

The matrix G is a Gram matrix for the linearly independent ψ_{j} 's. Consequently, it's invertible. Due to the compact support of ψ_{k}, we see that

$$
\begin{equation*}
\left\langle\psi_{j}, \psi_{k}\right\rangle=\int_{0}^{1} \psi_{j}^{\prime \prime}(x) \psi_{k}^{\prime \prime}(x) d x=\int_{\left[\frac{j-1}{n}, \frac{j+1}{n}\right] \cap\left[\frac{k-1}{n}, \frac{k+1}{n}\right]} \psi_{j}^{\prime \prime}(x) \psi_{k}^{\prime \prime}(x) d x \tag{5.5}
\end{equation*}
$$

This integral is nonzero only for $k=j-1, k=j$ or $k=j+1$. Therefore, G is a tridiagonal matrix, and the system (5.4) is also "tridiagonal." Such systems are easy to solve numerically.

Previous: the discrete Fourier transform
Next: x-ray tomography and integral equations

[^0]: *Revised October 2019

[^1]: ${ }^{1}$ The order of a B-spline is $m=k+1$.

[^2]: ${ }^{2}$ In the case where Δ is a set of equally spaced knots on $[0,1]$, we will let $S^{\frac{1}{n}}(k, r):=$ $S^{\Delta}(k, r)$.

[^3]: ${ }^{3}$ The same argument applies to a knot sequence of the form $\Delta=\left\{x_{0}=0<x_{1}<x_{2}<\right.$ $\left.\cdots<x_{n}=1\right\}$. Hence, $\operatorname{dim} S^{\Delta}(k, r)=n(k-r)+r+1$.

