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1 Splines

Splines are piecewise polynomial functions that have certain “regularity”
properties. These can be defined on all finite intervals, and intervals of the
form (−∞, a], [b,∞) or (−∞,∞).

We have already encountered linear splines, which are simply continuous,
piecewise-linear functions. More general splines are defined similarly to the
linear ones. They are labeled by three things: (1) a knot sequence, ∆; (2) the
degree k of the polynomial; and, (3) the space Cr, the level of differentiability
of the whole spline. The knot sequence is where the polynomial may change.
For a linear spline defined on [0, 1], the knot sequence ∆ = {x0 = 0 < x1 <
x2 < · · · < xn = 1} is where one linear polynomial meets another. Since the
polynomials are linear, k = 1. Finally, since the linear splines are continuous,
they are in C0[0, 1], so r = 0.

Definition 1.1. We denote the set of splines having knot sequence ∆, degree
of polynomial k, and smoothness Cr by S∆(k, r).

There is a special case in which k = 0 and r = −1. These are just step
functions. Since the polynomials are taken to be constants, k = 0. Letting
r = −1 simply means that the step function is discontinuous at the knots.

With ∆, k, and r fixed, S∆(k, r) is a vector space, which may be finite
dimensional or infinitely dimensional. This raises the issue of bases for the
spaces.

1.1 Basis Splines – B-Splines

We begin with the following useful notation. The function below is called
the plus function, for obvious reasons.
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(x)+ =

{
x x ≥ 0

0 x < 0.

The plus function is a linear spline, with ∆ = Z, k = 1, and r = 0. (We
remark that the only place the linear function changes is at x = 0.) It s
defined over R. With it in hand, we can define the order1 m = 2 cardinal
B-spline:

N2(x) = (x)+ − 2(x− 1)+ + (x− 2)+ . (1.1)

The knot sequence for N2 is the the set of all integers, Z, although changes
in the function only occur at {0, 1, 2}, and N2 is a linear spline. As the
graph below shows, N2 is a “tent” function.
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Proposition 1.2. Let ∆ be an equally spaced knot sequence, with xj = j
n ,

j = 0, . . . , n. Then B = {N2(nx − j + 1) : j = 0, . . . , n} is a basis for
S∆(1, 0) (the space of linear splines), provided x ∈ [0, 1].

Proof. Exercise.

1The order of a B-spline is m = k + 1.
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Example 1.3. Consider n = 4. Recall that the values at the corners and
endpoints determine the linear spline. So, let yj be given at j = 0, 1, 2, 3, 4.
Then, the interpolating spline is

s(x) =

4∑
j=0

yjN2(4x− j + 1), 0 ≤ x ≤ 1.

The order 1 B-spline is just a “box” of the form N1(x) =

{
1 x ∈ [0, 1)

0 x 6∈ [0, 1)
.

It can be used to start an iteration to obtain cardinal B-splines of order
m ≥ 2 and higher. The recurrence formula to be iterated is

Nm(x) =
x

m− 1
Nm−1(x) +

m− x
m− 1

Nm−1(x− 1).

From the formula above, one can show that the order m B-splines, Nm, are
in SZ(m − 1,m − 2), and that the support of Nm is precisely [0,m]. This
feature is important enough that is used to label them.

2 Finite Element Spaces

Let ∆ := {x0 = 0 < x1 < x2 < · · · < xn = 1} be a knot sequence for [0, 1]. It
is convenient to define the subintervals Ij = [xj−1, xj), with In = [xn−1, 1].
Let Pk denote the set of polynomials of degree less than or equal to k. By
Definition 1.1, the space of splines may be written as follows:

S∆(k, r) = {φ : [0, 1]→ R : φ|Ij ∈ Pk(Ij) and φ ∈ C(r)([0, 1])} (2.1)

When r = −1, φ is discontinuous.
Consider an equally spaced knot sequence for [0, 1], ∆ = {j/n : j =

0, . . . , n}. The finite element spaces2 S
1
n (k, r) are degree k polynomials on

each interval and have r ≤ k−1 derivatives that match at the interior knots.
We consider the following question: How many parameters are required to
describe a function in S

1
n (k, r)? That is, what is the dimension of this linear

space?
There are n intervals and on each interval there are k+1 free parameters,

since the function is a degree k polynomial there. Therefore, we have n(k+1)
free parameters. At each of the n−1 knots, the polynomials must smoothly

2In the case where ∆ is a set of equally spaced knots on [0, 1], we will let S
1
n (k, r) :=

S∆(k, r).
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join, so there are r + 1 equations that must match (the polynomials across
a knot must match and their r derivatives must match). This yields (n −
1)(r+ 1) constraints. Therefore, we have at least n(k+ 1)− (n−1)(r+ 1) =

n(k − r) + r + 1 parameters. It follows that the dimension of S
1
n (k, r) =

n(k − r) + r + 1 provided that the equations at the knots are independent
(which can be shown). We summarize this below3

Proposition 2.1. dimS
1
n (k, r) = n(k − r) + r + 1.

For an example, consider k = 1, r = 0. This is the space S
1
n (1, 0) which

has dimension n(1−0) + 0 + 1 = n+ 1. If we consider k = m−1, r = m−2,

then the dimension S
1
n (m−1,m−2) is n(m−1−m+2)+m−2+1 = n+m−1.

3 Construction of Cubic Splines

The cubic splines in S
1
n (3, 1) are differentiable, piecewise cubic polynomials

defined on [0, 1]. Cubic splines can be used to simultaneously interpolate
both a function and its derivatives on any set of knots {xj}nj=0. That is, if the
values f(xj) and f ′(xj) are known, then there exists a (unique) cubic spline

s ∈ S
1
n (3, 1) satisfies both s(xj) = f(xj) and s′(xj) = f ′(xj). Returning to

∆ = {j/n}nj=0, we see that, by Proposition 2.1, the dimension of S
1
n (3, 1),

is 2n+ 2, which exactly matches the 2n+ 2 pieces of data to be fit.
We construct a basis of functions for S

1
n (3, 1) by first constructing two in-

terpolating functions. Consider the interval [0, 1] and the problem of finding
a cubic polynomial φ(x) such that φ(0) = 1, and φ(1) = φ′(1) = φ′(0) = 0.
Then, a polynomial of the form

φ(x) = A(x− 1)3 +B(x− 1)2

satisfies φ(1) = φ′(1) = 0. Substituting the values for φ(0) = 1 and φ′(0) = 0
yields −A + B = 1 and 3A − 2B = 0, which has the solution A = 2 and
B = 3. Then, after re-arranging, we see that

φ(x) = 2(x− 1)3 + 3(x− 1)2 = (x− 1)2(2x+ 1).

We then extend the function to all of R as follows:

φ(x) =

{
(|x| − 1)2(2|x|+ 1) |x| ≤ 1

0 |x| > 1,
(3.1)

3The same argument applies to a knot sequence of the form ∆ = {x0 = 0 < x1 < x2 <
· · · < xn = 1}. Hence, dimS∆(k, r) = n(k − r) + r + 1.
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By construction, φ(0) = 1 and φ′(±1) = φ′(0) = 0. Of course, outside of
[−1, 1], it is identically 0. It is easy to show that φ ∈ C(1), so φ ∈ SZ(3, 1).
The function φ will be used to interpolate the values of a function, while
yielding zero derivative data on each of the knots.

We next construct a function ψ that takes zero value at the endpoints,
but assumes a derivative value of one at 0. We let ψ be the cubic function

ψ(x) = A(x− 1)3 +B(x− 1)2,

which already satisfies ψ(1) = ψ′(1) = 0. The condition ψ(0) = 0 implies
A = B and the condition ψ′(0) = 1 implies 3A− 2B = 1. Combining these
conditions yields the function

ψ(x) = x(x− 1)2.

We then extend it to all of R:

ψ(x) =

{
x(|x| − 1)2 |x| ≤ 1

0 |x| > 1
(3.2)

As in the case of φ, we have ψ ∈ SZ(3, 1), but this time ψ(0) = 0 and
ψ′(0) = 1.

We now construct a set of functions that will form a basis for S
1
n (3, 1).

We begin by changing scale in φ and ψ, which are defined in (3.1) and (3.2),
and then translating the resulting functions. For φ, we define

φj(x) := φ(nx− j). (3.3)

Notice that φ0(x) = φ(nx) and φj(x) = φ(n(x − j
n)) = φ0(x − j

n). That

is, φj(x) is φ0(x) translated by j
n , that φj(x) is supported on the interval

[ j−1
n , j+1

n ], and that the conditions used to define φ – i.e., φ(0) = 1, φ′(0) = 0
and so on – imply that φj(k/n) = δj,k and that φ′j(k/n) = 0.

To construct ψj basis functions from ψ, we first consider the derivative
of ψ(nx− j). We note that

d
dx(ψ(nx− j))

∣∣
x= j

n
= nψ′(nx− j)

∣∣
x= j

n
= nψ′(0) = n.

From this computation, in order to have ψ′j(k/n) = 1, must scale ψ(nx− j)
by n. Consequently, we define

ψj(x) =
1

n
ψ(nx− j) (3.4)

and we see the the support of ψj is also contained in the interval [ j−1
n , j+1

n ].
Applying the conditions imposed on ψ, we see that ψj(k/n) = 0 and that
ψ′j(k/n) = δj,k.
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4 Interpolation with Cubic Splines

We consider the problem of interpolating a function f and its derivative at
a set of n + 1 equally spaced knots, using the cubic splines constructed in
the previous section. We begin by showing that {φj , ψj}nj=0 is a basis for

S
1
n (3, 1).

We note that there are n+ 1 of each type, which gives a total of 2n+ 2
functions in the set. Since this is the dimension of S

1
n (3, 1), it suffices to

show that the set {φj , ψj}nj=0 is linearly independent.
Consider a linear combination of the cubic splines, s(x) =

∑n
j=0 αjφj(x)+

βjψj(x).Using φj(k/n) = δj,k, φj(k/n) = 0 and ψj(k/n) = 0, ψ′j(k/n) = δk,j ,
we see that

s(k/n) =

n∑
j=0

αj φj(k/n)︸ ︷︷ ︸
δj,k

+βj ψj(k/n)︸ ︷︷ ︸
0

= αk (4.1)

s′(k/n) =
n∑
j=0

αj φ
′
j(k/n)︸ ︷︷ ︸

0

+βj ψ
′
j(k/n)︸ ︷︷ ︸
δj,k

= βk, (4.2)

As usual, showing linear independence amounts to showing that s(x) ≡
0 implies that the αj ’s and βj ’s are all 0. Note that if s ≡ 0, then so
is s′. Hence, the previous equation implies that αk = s(k/n) = 0 and
βk = s′(k/n) = 0. Since the αj ’s and βj ’s are all 0, the set {φj , ψj}nj=0 is

linearly independent, and hence is a basis for S
1
n (3, 1).

Solving the interpolation problem stated at the start of this section is
now actually very easy to do; just set

s(x) =
n∑
j=0

f(j/n)φj(x) + f ′(j/n)ψj(x). (4.3)

By (4.1), we have s(k/n) = f(k/n) and s′(k/n) = f ′(k/n). Hence, s in (4.3)
(uniquely) solves the interpolation problem.

5 Finite Element Methods and Galerkin Methods

Consider the problem of finding the “smoothest” function in S
1
n (3, 1) such

that at the knots xj , s(xj) = fj for j = 0, . . . , n. To define “smoothest”, we
seek a function s that minimizes

‖s‖2 :=

∫ 1

0
(s′′(x))2 dx (5.1)
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over all s ∈ S
1
n (3, 1) for which s(xj) = fj for j = 0, . . . , n.

Since s is a piecewise cubic function, s′′ exists and is piecewise continu-
ous. Therefore, the equation (5.1) is well defined for all of s ∈ S

1
n (3, 1). In

fact, it can be shown that (5.1) is an inner product on the set of functions

in S
1
n (3, 1) that are zero at the endpoints.

Any function s ∈ S
1
n (3, 1) such that s(xj) = fj can be written in the

form

s(x) =

n∑
j=0

fjφj(x)−
n∑
j=0

αjψj(x).

Let f =
∑n

j=0 fjφj(x). We seek to find coefficients α that minimize the
norm of s. That is, we want to solve the problem

min
g∈span(ψj)

‖f − g‖. (5.2)

This is a least-squares problem that can be dealt with by solving the asso-
ciated normal equations. We expand g =

∑n
j=0 αjψj and we seek to find

coefficients αj such that

〈f − g, ψk〉 = 0 (5.3)

for k = 0, . . . , n. Expanding g in terms of the ψk functions, we see this yields
a system of equations

n∑
j=0

αj 〈ψj , ψk〉︸ ︷︷ ︸
Gj,k

= 〈f, ψk〉. (5.4)

The matrix G is a Gram matrix for the linearly independent ψj ’s. Conse-
quently, it’s invertible. Due to the compact support of ψk, we see that

〈ψj , ψk〉 =

∫ 1

0
ψ′′j (x)ψ′′k(x) dx =

∫
[ j−1

n
, j+1

n
]∩[ k−1

n
, k+1

n
]
ψ′′j (x)ψ′′k(x) dx. (5.5)

This integral is nonzero only for k = j − 1, k = j or k = j + 1. Therefore,
G is a tridiagonal matrix, and the system (5.4) is also “tridiagonal.” Such
systems are easy to solve numerically.

Previous: the discrete Fourier transform
Next: x-ray tomography and integral equations
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