Problem 4, §8.2

Recall that we derived the sine transform $\widehat{G}(\mu, t)$ of the Green's function $G(x, t)$ for the wave equation with boundary conditions $G(0, t)=0$ and initial conditions $G(x, 0)=0, G_{t}(x, 0)=0$ for $x \geq 0$. (See problem 4, §8.2). What we found was that

$$
\widehat{G}(\mu, t)=H(t-\tau) \frac{\sin (\mu \xi) \sin (\mu(t-\tau))}{\mu}
$$

The function $\widehat{G}(\mu, t)=0$ when $t-\tau \leq 0$., and we multiply by the Heaviside step function $H(t-\tau)$ to take care of this. Note that although the solution is a tempered distribution, for t fixed it is in $L^{2}([0, \infty))$ as a function of μ. (The integral is improper, but convergent.) Thus the formula for the inverse sine transform,

$$
G(x, t)=\frac{2 H(t-\tau)}{\pi} \int_{0}^{\infty} \frac{\sin (\mu \xi) \sin (\mu(t-\tau))}{\mu} \sin (\mu x) d \mu
$$

applies in the usual L^{2} sense. Using the product-to-sum formulas from trigonometry, we obtain

$$
\begin{aligned}
G(x, t) & =\frac{H(T)}{2 \pi} \int_{0}^{\infty} \frac{\sin (\mu(T+x-\xi))}{\mu} d \mu+\frac{H(T)}{2 \pi} \int_{0}^{\infty} \frac{\sin (\mu(T-x+\xi))}{\mu} d \mu \\
& -\frac{H(T)}{2 \pi} \int_{0}^{\infty} \frac{\sin (\mu(T-x-\xi))}{\mu} d \mu-\frac{H(T)}{2 \pi} \int_{0}^{\infty} \frac{\sin (\mu(T+x+\xi))}{\mu} d \mu,
\end{aligned}
$$

where $T:=t-\tau$. Each integral has the form $\int_{0}^{\infty} \frac{\sin (a \mu)}{\mu} d \mu$, where a is real. We amy assume $a \neq 0$. Changing variables from μ to $\nu=|a| \mu$ then yields

$$
\int_{0}^{\infty} \frac{\sin (a \mu)}{\mu} d \mu=\operatorname{sign}(a) \underbrace{\int_{0}^{\infty} \frac{\sin (\nu)}{\nu} d \nu}_{\pi / 2}=\frac{\pi}{2} \operatorname{sign}(a)
$$

It follows that $G(x, t)$ has the form

$$
\begin{aligned}
G(x, t) & =H(T)(\operatorname{sign}(T+x-\xi)+\operatorname{sign}(T-x+\xi)) / 4 \\
& -H(T)(\operatorname{sign}(T-x-\xi)-\operatorname{sign}(T+x+\xi)) / 4 .
\end{aligned}
$$

Checking various sign combinations, one can show that this expression has the equivalent form

$$
G(x, t)=\frac{1}{2} H(t-\tau-|x-\xi|)-\frac{1}{2} H(t-\tau-|x+\xi|) .
$$

This agrees with the solution in $\S 8.2$ that was found via the "method of images."

