Final Examination

This take-home exam is due at 3 pm on Tuesday, May 8. You may consult any written or online source. You may not consult any person, either a fellow student or faculty member, except your instructor

1. (5 pts.) Let T be a bounded self-adjoint operator on a Hilbert space \mathcal{H}. In addition, suppose that 0 is in the continuous spectrum of T. If D is the range of T, show that $H=T^{-1}$, with domain H being D, is a self-adjoint operator.
2. Let $L u=-r^{-2} \frac{d}{d r} r^{2} \frac{d u}{d r}, 0<r<\infty$, with boundary conditions $r^{2} u^{\prime} \rightarrow 0$ and u bounded as $r \rightarrow 0$, and similar conditions as $r \rightarrow+\infty$.
(a) (5 pts.) Show that L is (formally) self adjoint in the inner product $\langle u, v\rangle=\int_{0}^{\infty} u(r) \overline{v(r)} r^{2} d r$.
(b) (10 pts.) Find the Green's function for L.
(c) (15 pts.) Use Stone's formula (or the book's contour technique) to find the associated spectral transform. In addition, you may make use of any asymptotic formulas required in the problem.
3. (15 pts.) Problem 6(a), section 7.5, p. 333 in the text.
4. (10 pts.) Consider $E_{1}(x)=\int_{x}^{\infty} t^{-1} e^{-t} d t, x>0$. Find the asymptotic expansion for $E_{1}(x)$ as $x \rightarrow+\infty$. (Hint: show that $E_{1}(x)=e^{-x} \int_{0}^{\infty}(1+$ $t)^{-1} e^{-x t} d t$.)
5. (10 pts.) Problem $11(\mathrm{a})$, section 10.3 , p. 465 in the text.
6. (15 pts.) Consider $f(x)=\int_{0}^{2} e^{i x\left(t^{2}-2 t\right)} d t, x>0$. Use the method of steepest descent to show that $f(x)=e^{i(\pi / 4-x)} \sqrt{\frac{\pi}{x}}\left(1+\mathcal{O}\left(x^{-1 / 2}\right)\right)$ as $x \rightarrow+\infty$.
7. ($\mathbf{1 5} \mathbf{~ p t s .) ~ P r o v e ~ t h i s ~ v e r s i o n ~ o f ~ t h e ~ p r i n c i p l e ~ o f ~ s t a t i o n a r y ~ p h a s e : ~ F o r ~ a l l ~}$ $\lambda \in \mathbb{R}$, let $F(\lambda):=\int_{-\infty}^{\infty} e^{i \lambda h(t)} g(t) d t$, where $g \in C^{(2)}(\mathbb{R}), g, g^{\prime} \in L^{1}(\mathbb{R})$, $g(0) \neq 0$, and where $h \in C^{(3)}(\mathbb{R})$ is real valued, and satisfies $h^{\prime}(0)=0$, $h^{\prime \prime}(t)>0$ for all $t \in \mathbb{R}$. Then, $F(\lambda) \sim \sqrt{\frac{2 \pi}{\lambda h^{\prime \prime}(0)}} g(0) e^{i \lambda h(0)+i \pi / 4}$ as $\lambda \rightarrow+\infty$.
