Midterm

This test due Friday, 3/9/2011. You may consult any written or online source. You may not consult anyone, except your instructor

1. (15 pts.) Problem 5.4.2, p. 208.
2. ($\mathbf{1 0}$ pts.) Problem 6.2.14, p. 276.
3. (15 pts.) Problem 6.4.4, p. 277.
4. (15 pts.) Problem 6.4.25, p. 279.
5. (15 pts.) Let $\alpha>0,0<\beta<1$, and $\mu>0$. Show that

$$
\int_{-\infty}^{\infty} \frac{e^{-i \mu x}}{(x+i \alpha)^{\beta}} d x=2 e^{-\alpha \mu-\pi i \beta / 2} \sin (\pi \beta) \mu^{\beta-1} \Gamma(1-\beta),
$$

where z^{β} has $-\pi / 2<\arg (z) \leq 3 \pi / 2$. (Hint: there is a branch cut for $(z+i \alpha)^{\beta}$ along the imaginary axis $\Im(z)=y$ starting at $y=-\alpha$ and running down to $y=-\infty$. Deform the contour to make use of the cut.)
6. Let $w=f(z)$ be analytic in a region containing the disk $|z| \leq 1$, and suppose that $f(0)=0, f^{\prime}(0) \neq 0$. For z small enough, $f(z)$ maps this disk one-to-one and onto a region in the w plane containing a disk $|w| \leq a$.
(a) (10 pts.) Show that the function inverse to $f, g(w)$, is given by the contour integral

$$
\begin{equation*}
g(w)=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{z f^{\prime}(z)}{f(z)-w} d z \tag{1}
\end{equation*}
$$

(b) (10 pts.) For $f(z)=(z-2)^{2}-4$ and $|w|$ small, expand the integrand in (1) in a power series in w. Calculate the first three coefficients in this series and verify that the result agrees with the coefficients in the power series for $z=2-\sqrt{w+4}$, where the square root uses principal branch in which $\arg (z) \in(-\pi, \pi]$.
7. ($\mathbf{1 5}$ pts.) The following is a special case of the Paley-Wiener Theorem. Let $f(z)$ be an entire function that satisfies these conditions: (1) for $x \in \mathbb{R}, f(x) \in L^{1}(\mathbb{R}) ;(2)$ there exist constants $A>0, \rho>0$, and $\delta>0$ such that $|f(z)| \leq A(|z|+1)^{-\delta} e^{\rho|\Im(z)|}$ for all $z \in \mathbb{C}$. Show that for all $\xi \in \mathbb{R}$ such that $|\xi|>\rho$ one has that

$$
\int_{-\infty}^{\infty} f(x) e^{i \xi x} d x=0
$$

