Midterm

This test due Wednesday, 3/19/2014. You may consult any written or online source. You may not consult anyone, except your instructor

1. ($\mathbf{1 0} \mathbf{~ p t s .) ~ A ~ m a s s ~} m$ is attached to a pendulum of length ℓ and negligible weight. The pendulum itself is attached to a fixed pivot and allowed to swing freely, with the mass subject only to gravity. (Gravity points in the $-\mathbf{k}$ direction). Take the pivot to be the origin. Using spherical coordinates, where θ is the colatitude (off the direction \mathbf{k}) and ϕ is the longitude, find the Hamiltonian for the system, along with two constants of the motion. Use these to find a first order nonlinear differential equation for θ.
2. ($\mathbf{1 5}$ pts.) Let $f(x)$ be continuous on $[a, b]$. Suppose that, for all $\eta \in C^{k}[a, b]$ satisfying $\eta^{(j)}(a)=\eta^{(j)}(b)=0, j=0, \ldots, k-1$, we have $\int_{a}^{b} f(x) \eta^{(k)}(x) d x=0$. Show that $f(x)$ is a polynomial of degree $k-1$.
3. (15 pts.) Let $J[y]=\int_{0}^{1} y^{(k)}(x)^{2} d x$. The admissible set for J consists of all piecewise C^{k} curves for which $y(j / n)=y_{j}, j=0, \ldots n$, with the discontinuities in $y^{(k)}$ occurring only at the points $x_{j}=j / n$. Use the previous problem to show that the minimizer $y(x)$ for J is in the finite element space $S^{1 / n}(2 k-1,2 k-2)$.
4. Let f and g be analytic functions in a neighborhood of $z=0$. Suppose that the Taylor series expansions for f and g are $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, respectively.
(a) (5 pts.) Show that the coefficients in the power series for $f(z) g(z)$ are $c_{n}=\sum_{k=0}^{n} a_{n-k} b_{k}=\sum_{k=0}^{n} a_{k} b_{n-k}$.
(b) (5 pts.) If $a_{0} \neq 0$, then $\frac{1}{f(z)}$ is analytic at $z=0$. Show that if $\frac{1}{f(z)}=\sum_{k=0}^{\infty} b_{k} z^{k}$, then $b_{0}=\frac{1}{a_{0}}$ and the remaining b 's satisfy the recurrence relation

$$
b_{n}=-\sum_{k=0}^{n-1} \frac{a_{n-k}}{a_{0}} b_{k}, n \geq 1
$$

(c) (5 pts.) Given that $\frac{e^{z}-1}{z}=\sum_{k=0}^{\infty} \frac{z^{n}}{(n+1)!}$, find a recurrence relation for the B_{k} 's in the series

$$
\frac{z}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k} z^{k}
$$

In addition, find B_{k} for $0 \leq k \leq 5$. (The B_{k} 's are called the Bernoulli numbers.)
(d) (10 pts.) Let $S_{m}(n)=\sum_{k=1}^{n} k^{m}$. Show that $1+\sum_{m=0}^{\infty} S_{m}(n) \frac{z^{m}}{m!}=$ $\sum_{k=0}^{n} e^{k z}=\frac{e^{(n+1) z}-1}{z} \frac{z}{e^{z}-1}$. Find a formula for $S_{m}(n)$ in terms of B_{k} 's, $k \leq m$. Use it to find $S_{5}(n)$.
5. (10 pts.) Let $I\left((\lambda)=\int_{-\infty}^{\infty} e^{-x^{2}+i \lambda x} d x\right.$, where $\lambda>0$. You are given $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$. In addition, let C_{R} be the counter clockwise oriented boundary of the rectangle with vertices $-R, R, R+\frac{1}{2} i \lambda,-R+\frac{1}{2} i \lambda$. Integrate $e^{-z^{2}}$ around C_{R} and let $R \rightarrow \infty$ to show that $I(\lambda)=\sqrt{\pi} e^{-\lambda^{2} / 4}$.
6. (10 pts.) For $-1<\beta<1$, let $I(\beta)=\int_{0}^{\infty} \frac{x^{\beta}}{(1+x)^{2}} d x$. Use a "keyhole" contour to find $I(\beta)$.
7. ($\mathbf{1 5}$ pts.) The following is a special case of the Paley-Wiener Theorem. Let $f(z)$ be an entire function that satisfies these conditions: (1) for $x \in \mathbb{R}, f(x) \in L^{1}(\mathbb{R}) ;(2)$ there exist constants $A>0, \rho>0$, and $\delta>0$ such that $|f(z)| \leq A(|z|+1)^{-\delta} e^{\rho|\operatorname{Im}(z)|}$ for all $z \in \mathbb{C}$. Show that for all $\xi \in \mathbb{R}$ such that $|\xi|>\rho$ one has that

$$
\int_{-\infty}^{\infty} f(x) e^{i \xi x} d x=0
$$

