Final Examination

This take-home exam is due at 4 pm on Wednesday, May 7. You may consult any written or online source. You may not consult any person, either a fellow student or faculty member, except your instructor

1. (15 pts.) Suppose that L is a closed, densely defined self-adjoint linear operator on a Hilbert space \mathcal{H}, with domain $D(L)$. Show that the spectrum of L is a subset of \mathbb{R} and that the residual spectrum of L is empty.
2. Consider the operator $L u=-u^{\prime \prime}$ defined on functions in $L^{2}[0, \infty)$ having $u^{\prime \prime}$ in $L^{2}[0, \infty)$ and satisfying the boundary condition that $u^{\prime}(0)=0$; that is, L has the domain

$$
\mathcal{D}_{L}=\left\{u \in L^{2}[0, \infty) \mid u^{\prime \prime} \in L^{2}[0, \infty) \text { and } u^{\prime}(0)=0\right\}
$$

(a) (10 pts.) Find the Green's function $G(x, \xi ; z)$ for $-G^{\prime \prime}-z G=$ $\delta(x-\xi)$, with $G_{x}(0, \xi ; z)=0$. (This is the kernel for the resolvent $(L-z I)^{-1}$.)
(b) (10 pts.) Employ the spectral theorem to obtain the cosine transform formulas,

$$
F(\mu)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \cos (\mu x) d x \text { and } f(x)=\int_{0}^{\infty} F(\mu) \cos (\mu x) d \mu
$$

3. ($\mathbf{1 5} \mathbf{p t s}$.$) Use the following convention to define the Fourier trans-$ form: $\mathcal{F}[f](\xi):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i \xi x} d x$, so $\|f\|=\|\hat{f}\|$ and $\mathcal{F}^{-1}[\hat{f}](x)=$ $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{-i \xi x} d \xi$. You are given that the eigenvalue problem $-y_{n}^{\prime \prime}+$ $x^{2} y_{n}=(2 n+1) y_{n}$, where $n=0,1,2 \ldots, y \in L^{2}(\mathbb{R})$ has a unique solution that is even or odd, depending on whether n is even or odd. Show that $\mathcal{F}\left[y_{n}\right]=(-1)^{n} y_{n}$.
4. (15 pts.) Suppose that $g \in C^{\infty}(\mathbb{R})$ satisfies

$$
\left|g^{(m)}(t)\right| \leq c_{m}\left(1+t^{2}\right)^{n_{m}}
$$

for all nonnegative integers m . Here c_{m} and n_{m} depend on g and m. Show that if f is in Schwartz space, \mathcal{S}, then $f g \in \mathcal{S}$. In addition, suppose $T \in \mathcal{S}^{\prime}$, show that $g(x) T(x)$ is also in \mathcal{S}^{\prime}, if $\langle g T, f\rangle:=\langle T, g f\rangle$.
5. (20 pts.) Prove this version of Watson's Lemma: Suppose that $z \in \mathbb{C}$ and that $|\arg (z)| \leq \delta<\frac{p i}{2}$. Let $F(z):=\int_{-\infty}^{\infty} e^{-z t^{2}} f(t) d t$, where for $t \in \mathbb{C},|t| \leq T_{0}, f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ and, in addition, there is an $\alpha>0$ such that $|f(t)| \leq C|t|^{\alpha},|t| \geq T_{0}$. Then,

$$
F(z) \sim \sum_{k=0}^{\infty} a_{2 k} \Gamma\left(k+\frac{1}{2}\right) z^{-k-\frac{1}{2}},|z| \rightarrow \infty .
$$

6. The object of this problem is to prove Stirling's formula for $\Gamma(x+1)$, $x \rightarrow+\infty$.
(a) (5 pts.) Show that $x^{-x-1} e^{x} \Gamma(x+1)=\int_{0}^{\infty} e^{-x h(t)} d t, h(t):=$ $t-1-\log (t)$.
(b) (5 pts.) Let $u=u(t):=\sqrt{\frac{h(t)}{(t-1)^{2}}}(t-1)$. Verify that $u(t) \in$ $C^{1}(0, \infty)$, is increasing, and that

$$
x^{-x-1} e^{x} \Gamma(x+1)=\int_{-\infty}^{\infty} e^{-x u^{2}} \frac{d t}{d u} d u .
$$

(c) (5 pts.) Show that for u near $0, d t / d u=\sqrt{2}+\mathcal{O}(u)$. Use the previous problem to show that

$$
\Gamma(x+1) \sim \sqrt{2 \pi} x^{x+\frac{1}{2}} e^{-x}\left(1+\mathcal{O}\left(x^{-1}\right)\right) .
$$

