Test 1

Take-home part. This take-home part of the Midterm is due Tuesday, $3 / 24 / 2015$. You may consult any written or online source. You may not consult anyone, except your instructor

1. (10 pts.) Let $f(x)$ be continuous on $[a, b]$ and suppose that, for all $\eta \in C^{k+1}[a, b]$ satisfying $\eta^{(j)}(a)=\eta^{(j)}(b)=0, j=0, \ldots, k$, we have $\int_{a}^{b} f(x) \eta^{k+1}(x) d x=0$. Show that $f(x)$ is a polynomial of degree k.
2. (15 pts.) Let $\alpha>0,0<\beta<1$, and $\mu>0$. Show that

$$
\int_{-\infty}^{\infty} \frac{e^{-i \mu x}}{(x+i \alpha)^{\beta}} d x=2 e^{-\alpha \mu-\pi i \beta / 2} \sin (\pi \beta) \mu^{\beta-1} \Gamma(1-\beta),
$$

where z^{β} has $-\pi / 2<\arg (z) \leq 3 \pi / 2$. (Hint: there is a branch cut for $(z+i \alpha)^{\beta}$ along the imaginary axis, starting at $y=-\alpha$ and running down to $y=-\infty$. Deform the contour to make use of the cut.)
3. A planet moving around the Sun in an elliptical orbit, with eccentricity $0 \leq \varepsilon<1$ and period P, has time and angle related in the following way. Let $\tau=(2 \pi / P)\left(t-t_{p}\right)$, where t_{p} is the time when the planet is at perihelion - i.e., it is nearest the Sun. Let θ be the usual polar angle and let u be an angle related to θ via

$$
(1-\varepsilon)^{1 / 2} \tan (u / 2)=(1+\varepsilon)^{1 / 2} \tan (\theta / 2)
$$

It turns out that $\tau=u-\varepsilon \sin (u)$. All three variables θ, u, and τ are measured in radians. They are called the true, eccentric, and mean anomalies, respectively. (Anomaly is another word for angle.)
(a) (5 pts.) For $0 \leq \varepsilon<1$, show that the equation $\tau=u-\varepsilon \sin (u)$ may be solved, at least in principle, for $u=u(\tau)$, for all τ Also, show $u(\tau)$ is odd, and that $g(\tau)=u(\tau)-\tau$ is a 2π periodic function of τ. Show that the Fourier series of $g(\tau)$ is a sine series. That is,

$$
g(\tau)=\sum_{n=1}^{\infty} b_{n} \sin (n \tau)
$$

(b) (10 pts.) Show that $b_{n}=(2 / n) J_{n}(n \varepsilon), n=1,2, \ldots$, where J_{n} is the $n^{t h}$ order Bessel function of the first kind. Thus, we have that

$$
u=\tau+\sum_{n=1}^{\infty}(2 / n) J_{n}(n \varepsilon) \sin (n \tau)
$$

4. Consider the set orthogonal polynomials $h_{n}(x)$ generated via the GramSchmidt process with respect to the inner product

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) e^{-x^{2}} d x
$$

(a) (5 pts.) Show that the polynomial $H_{n}(x):=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)$ satisfies $\left\langle p, H_{n}\right\rangle=0$ for all polynomials of degree $n-1$ or less. Explain why this implies that H_{n} is, up to a constant factor, h_{n}.
(b) (5 pts.) By the Cauchy integral formula for derivatives, we have that

$$
\frac{d^{n}}{d z^{n}}\left(e^{-z^{2}}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{e^{-\zeta^{2}}}{(\zeta-z)^{n+1}} d \zeta
$$

where C is any simple closed contour containing z in its interior. Use this show that

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{n}}{n!} \frac{d^{n}}{d z^{n}}\left(e^{-z^{2}}\right)=e^{-(z-t)^{2}}
$$

and, from the definition of the H_{n} 's, that

$$
\sum_{n=0}^{\infty} \frac{H_{n}(z)}{n!} t^{n}=e^{2 t z-t^{2}}
$$

which is the generating function for the Hermite polynomials. (The Hermite polynomials here are the ones that are used in physics.)

