Math. 642 Test 1: Take-home part. This take-home part of Test 1 is due Wednesday, 3/16/2016, at 4 pm. You may consult any written or online source. You may also consult your instructor; however, you may *not* consult anyone else. (The part of the exam is worth 120 points.)

- 1. Let $J[y] = \int_0^1 (y^{(k+1)}(x))^2 dx$. Let the admissible set for J be all piecewise C^{k+1} curves for which $y(j/n) = y_j$, $j = 0, \ldots n$, with the discontinuities in $y^{(k+1)}$ occurring only at the points $x_j = j/n$. In addition, assume that $y^{(\ell)}(0)$ and $y^{(\ell)}(1)$ are given for $\ell = 0, \ldots, k$.
 - (a) (20 pts.) Let f(x) be continuous on [a, b] and suppose that, for all $\eta \in C^{k+1}[a, b]$ satisfying $\eta^{(j)}(a) = \eta^{(j)}(b) = 0, j = 0, \dots, k$, we have $\int_a^b f(x)\eta^{(k+1)}(x)dx = 0$. Show that f(x) is a polynomial of degree k.
 - (b) (10 pts.) Use the previous part to show that the minimizer y(x) for J is in the finite element space $S^{1/n}(2k+1,2k)$. (Hint: Show that $y^{(m)}(x_j^-) = y^{(m)}(x_j^+)$ for $m = k + 1, \ldots, 2k$.)
- 2. Let w = f(z) be analytic in a region containing the disk $|z| \leq 1$, and suppose that f(0) = 0, $f'(0) \neq 0$. In addition, suppose that f(z) maps this disk one-to-one and onto a region in the w plane containing a disk $|w| \leq a$.
 - (a) (10 pts.) Show that the function inverse to f, g(w), is given by the contour integral

$$g(w) = \frac{1}{2\pi i} \oint_{|\zeta|=1} \frac{\zeta f'(\zeta)}{f(\zeta) - w} d\zeta.$$
⁽²⁾

- (b) (10 pts.) For $f(z) = (z 2)^2 4$ and |w| small, expand the integrand in (2) in a power series in w. Calculate the coefficients in this series and verify that the result is $z = 2 \sqrt{w+4}$, where the square root uses principal branch in which $\arg(z) \in (-\pi, \pi]$.
- 3. A mass m is attached to a pendulum of length ℓ and negligible weight. The pendulum itself is attached to a fixed pivot and allowed to swing freely, with the mass subject only to gravity. Take the pivot to be the origin.

- (a) (5 pts.) Using spherical coordinates, where θ is the colatitude and ϕ is the longitude, find the Hamiltonian for the system.
- (b) (10 pts.) Use part (b) above to find two constants of the motion. Use these in conjunction with the Hamiltonian from part (a) to find a first order nonlinear differential equation for θ. (You don't need to solve the equation.)
- (c) (10 pts.) If $\frac{d\phi}{dt}(0) = 0$, show that $\phi(t) = \phi(0)$, and that the system reduces to the simple pendulum in the plane $\phi = \phi(0)$.
- 4. The following is a special case of the Paley-Wiener Theorem. An entire function f(z) i.e., analytic in \mathbb{C} is said to be of *exponential type* if there exist constants A > 0 and $\sigma > 0$ such that $|f(z)| \leq Ae^{\sigma|z|}$ for all $z \in \mathbb{C}$.
 - (a) (20 pts.) Prove this: If f is of exponential type and f is uniformly bounded on the real axis, then there exists a constant M > 0 such that $|f(z)| \leq Me^{\sigma|y|}$, where y = Im(z). (Hint: Using appropriate rectangles, apply the maximum principle theorem to two different functions: $f(z)e^{-\sigma z}$, for $x \geq 0$, and, for $x \leq 0$, $f(z)e^{\sigma z}$.) Note: You may not use problem 6.2.13 in the text.
 - (b) (10 pts.) Prove this: Let f be of exponential type and suppose that $f(x) \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$. Then, for all $\omega \in \mathbb{R}$ for which $|\omega| > \sigma$, we have $f = \int_{-\infty}^{\infty} f(x) dx$

$$\int_{-\infty}^{\infty} f(x)e^{i\omega x}dx = 0.$$

5. (15 pts.) Recall that $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$, which is valid when z is in the right half plane, $\Re(z) > 0$. Apply the dominated convergence theorem to the difference quotient $(\Gamma(z+h) - \Gamma(z))/h$ to show that $\Gamma'(z) = \int_0^\infty t^{z-1} \ln(t) e^{-t} dt$.