Math. 642 Test 1: Take-home part. This take-home part of Test 1 is due Wednesday, $3 / 16 / 2016$, at 4 pm . You may consult any written or online source. You may also consult your instructor; however, you may not consult anyone else. (The part of the exam is worth 120 points.)

1. Let $J[y]=\int_{0}^{1}\left(y^{(k+1)}(x)\right)^{2} d x$. Let the admissible set for J be all piecewise C^{k+1} curves for which $y(j / n)=y_{j}, j=0, \ldots n$, with the discontinuities in $y^{(k+1)}$ occurring only at the points $x_{j}=j / n$. In addition, assume that $y^{(\ell)}(0)$ and $y^{(\ell)}(1)$ are given for $\ell=0, \ldots, k$.
(a) (20 pts.) Let $f(x)$ be continuous on $[a, b]$ and suppose that, for all $\eta \in C^{k+1}[a, b]$ satisfying $\eta^{(j)}(a)=\eta^{(j)}(b)=0, j=0, \ldots, k$, we have $\int_{a}^{b} f(x) \eta^{(k+1)}(x) d x=0$. Show that $f(x)$ is a polynomial of degree k.
(b) (10 pts.) Use the previous part to show that the minimizer $y(x)$ for J is in the finite element space $S^{1 / n}(2 k+1,2 k)$. (Hint: Show that $y^{(m)}\left(x_{j}^{-}\right)=y^{(m)}\left(x_{j}^{+}\right)$for $m=k+1, \ldots, 2 k$.)
2. Let $w=f(z)$ be analytic in a region containing the disk $|z| \leq 1$, and suppose that $f(0)=0, f^{\prime}(0) \neq 0$. In addition, suppose that $f(z)$ maps this disk one-to-one and onto a region in the w plane containing a disk $|w| \leq a$.
(a) (10 pts.) Show that the function inverse to $f, g(w)$, is given by the contour integral

$$
\begin{equation*}
g(w)=\frac{1}{2 \pi i} \oint_{|\zeta|=1} \frac{\zeta f^{\prime}(\zeta)}{f(\zeta)-w} d \zeta . \tag{2}
\end{equation*}
$$

(b) (10 pts.) For $f(z)=(z-2)^{2}-4$ and $|w|$ small, expand the integrand in (2) in a power series in w. Calculate the coefficients in this series and verify that the result is $z=2-\sqrt{w+4}$, where the square root uses principal branch in which $\arg (z) \in(-\pi, \pi]$.
3. A mass m is attached to a pendulum of length ℓ and negligible weight. The pendulum itself is attached to a fixed pivot and allowed to swing freely, with the mass subject only to gravity. Take the pivot to be the origin.
(a) (5 pts.) Using spherical coordinates, where θ is the colatitude and ϕ is the longitude, find the Hamiltonian for the system.
(b) (10 pts.) Use part (b) above to find two constants of the motion. Use these in conjunction with the Hamiltonian from part (a) to find a first order nonlinear differential equation for θ. (You don't need to solve the equation.)
(c) (10 pts.) If $\frac{d \phi}{d t}(0)=0$, show that $\phi(t)=\phi(0)$, and that the system reduces to the simple pendulum in the plane $\phi=\phi(0)$.
4. The following is a special case of the Paley-Wiener Theorem. An entire function $f(z)$ - i.e., analytic in \mathbb{C} - is said to be of exponential type if there exist constants $A>0$ and $\sigma>0$ such that $|f(z)| \leq A e^{\sigma|z|}$ for all $z \in \mathbb{C}$.
(a) (20 pts.) Prove this: If f is of exponential type and f is uniformly bounded on the real axis, then there exists a constant $M>0$ such that $|f(z)| \leq M e^{\sigma|y|}$, where $y=\operatorname{Im}(z)$. (Hint: Using appropriate rectangles, apply the maximum principle theorem to two different functions: $f(z) e^{-\sigma z}$, for $x \geq 0$, and, for $x \leq 0, f(z) e^{\sigma z}$.) Note: You may not use problem 6.2.13 in the text.
(b) (10 pts.) Prove this: Let f be of exponential type and suppose that $f(x) \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Then, for all $\omega \in \mathbb{R}$ for which $|\omega|>\sigma$, we have

$$
\int_{-\infty}^{\infty} f(x) e^{i \omega x} d x=0
$$

5. (15 pts.) Recall that $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$, which is valid when z is in the right half plane, $\Re(z)>0$. Apply the dominated convergence theorem to the difference quotient $(\Gamma(z+h)-\Gamma(z)) / h$ to show that $\Gamma^{\prime}(z)=\int_{0}^{\infty} t^{z-1} \ln (t) e^{-t} d t$.
