## Midterm

This midterm should be emailed to me by 11:59 pm on Thursday, April 9, 2020. You may consult any written or online source. You may also consult your instructor; however, you may not consult anyone else.

1. ( 20 pts.) Problem 5.2.4. (Hint: regard the mass $m$ the center of the string as contributing a delta function $m \delta(x-c)$, where $c$ is the center of the string.)
2. A planet moving around the Sun in an elliptical orbit, with eccentricity $0<\varepsilon<1$ and period $P$, has time and angle (position) related in the following way. Let $\tau=(2 \pi / P)\left(t-t_{p}\right)$, where $t_{p}$ is the time when the planet is at perihelion - i.e., it is nearest the Sun. Let $\theta$ be the usual polar angle and let $u$ be an angle related to $\theta$ via

$$
(1-\varepsilon)^{1 / 2} \tan (u / 2)=(1+\varepsilon)^{1 / 2} \tan (\theta / 2) .
$$

It turns out that $\tau=u-\varepsilon \sin (u)$. All three variables $\theta, u$, and $\tau$ are measured in radians. They are called the eccentric, and mean anomalies, respectively. (Anomaly is another word for angle.)
(a) (10 pts.) Show that one may uniquely solve $\tau=u-\varepsilon \sin (u)$ for $u=u(\tau)$, that $u$ is an odd function of $\tau$, and that $g(\tau)=u(\tau)-\tau$ is an odd, $2 \pi$ periodic function of $\tau$.
(b) (10 pts.) Because g is odd and $2 \pi$ periodic, it can be represented by a Fourier sine series,

$$
g(\tau)=\sum_{n=1}^{\infty} b_{n} \sin (n \tau) .
$$

Show that $b_{n}=\frac{2}{n} J_{n}(\varepsilon), n=1,2, \cdots$, where $J_{n}$ is the $n^{\text {th }}$ order Bessel function of the first kind. Thus, we have that $u=\tau+$ $\sum_{n=1}^{\infty}(2 / n) J_{n}(n \varepsilon) \sin (n \tau)$. (Hint: you will need to use equation (6.35) in the text.)
3. (20 pts.) Show that, for $n \geq 1, \frac{\Gamma^{\prime}(n+1+z)}{\Gamma(n+1+z)}=\sum_{k=1}^{n} \frac{1}{k+z}+\frac{\Gamma^{\prime}(1+z)}{\Gamma(1+z)}$. Specifically, for $z=0, \frac{\Gamma^{\prime}(n+1)}{\Gamma(n+1)}=\sum_{k=1}^{n} \frac{1}{k}-\gamma$, where $\gamma=-\Gamma^{\prime}(1)$ is the EulerMascheroni constant. (One can show that $\gamma:=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} \frac{1}{j}-\right.$
$\log (n)) \approx 0.5772$.) Use this formula to obtain

$$
Y_{0}(z)=\frac{2}{\pi}\left(\gamma+\log \left(\frac{z}{2}\right)\right) J_{0}(z)-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(\frac{z}{2}\right)^{2 n}\left(\sum_{k=1}^{n} \frac{1}{k}\right) .
$$

4. (20 pts.) Consider the Hermite polynomials ${ }^{1}$,

$$
H_{n}(x):=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
$$

Show that $e^{2 t z-t^{2}}=\sum_{n=0}^{\infty} \frac{H_{n}(z)}{n!} t^{n}$ is a generating function for the $H_{n}$ 's. Hint: $\frac{d^{n}}{d z^{n}}\left(e^{-z^{2}}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{e^{-\zeta^{2}}}{(\zeta-z)^{n+1}} d \zeta$, where $C$ is any simple closed contour containing $z$ in its interior.
5. (20 pts.) The following is a special case of the Paley-Wiener Theorem. Let $f(z)$ be an entire function that satisfies these conditions: (1) for $x \in \mathbb{R}, f(x) \in L^{1}(\mathbb{R}) ;(2)$ there exist constants $A>0, \rho>0$, and $\delta>0$ such that $|f(z)| \leq A(|z|+1)^{-\delta} e^{\rho|\operatorname{Im}(z)|}$ for all $z \in \mathbb{C}$. Show that for all $\xi \in \mathbb{R}$ such that $|\xi|>\rho$ one has that

$$
\int_{-\infty}^{\infty} f(x) e^{i \xi x} d x=0
$$

[^0]
[^0]:    ${ }^{1}$ The Hermite polynomials here are the ones that are used in physics in connection with the Harmonic oscillator potential, $k x^{2}$.

