Final Examination

This take-home exam is due at 12 noon on Wednesday, May 6, 2020. You may consult any written or online source. You may not consult any person, either a fellow student or faculty member, except your instructor

1. ($\mathbf{1 5}$ pts.) Let $L=L^{*}$ be a self-adjoint operator defined on a domain D. Show that if $\langle L f, f\rangle \geq 0$ for all $f \in D$, then all λ such that $\lambda \notin[0, \infty)$ are in the resolvent set $\rho(L)$.
2. Consider the self adjoint operator $L u=-u^{\prime \prime}, 0<x<\infty$, with $D_{L}=$ $\left\{u \in L^{2}([0, \infty)): u^{\prime \prime} \in L^{2}([0, \infty)), u^{\prime}(0)=0\right\}$.
(a) (10 pts.) Find the Green's function for L.
(b) (15 pts.) Use Stone's formula to find the associated spectral transform.
3. Let $L=L^{*}$ be a self-adjoint operator defined on a domain D and let E_{λ} be the right-continuous spectral family associated with L.
(a) (5 pts.) Show that if $\mu \leq \lambda$, then $E_{\lambda} E_{\mu}=E_{\mu} E_{\lambda}=E_{\mu}$ is equivalent to $E_{\mu} \leq E_{\lambda}$.
(b) (5 pts.) Show that $P=E_{\lambda}-E_{\mu}$ is and orthogonal projection.
(c) (10 pts.) Suppose that $E_{\lambda}-E_{\lambda^{-}} \neq 0$. Show that λ is an eigenvalue of L.
4. Suppose f is a band-limited signal, with $\widehat{f}(\omega)=0$ for $|\omega| \geq \Omega$. For $a>1$, let $g_{a}=\mathcal{F}^{-1}\left(\widehat{g}_{a}\right)$, where \widehat{g}_{a} is the function whose graph is given by Figure 1. Suppose that let f is sampled at the rate $a \Omega / \pi$ which is higher that the Nyquist rate, Ω / π. This means that we are oversampling f.
(a) (5 pts.) Show that, on $|\omega| \leq a \Omega, \widehat{f}(\omega)$, which is 0 for $|\omega| \geq \Omega$, can be represented by the $2 a \Omega$ periodic Fourier series,

$$
\begin{equation*}
\widehat{f}(\omega)=\sum_{n=-\infty}^{\infty} c_{-n} e^{-i n \pi \omega / a \Omega} \quad \text { with } c_{-n}=\frac{\pi}{a \Omega} f\left(\frac{n \pi}{a \Omega}\right) \tag{1}
\end{equation*}
$$

In addition, $\widehat{f}(\omega)=\sum_{n=-\infty}^{\infty} c_{-n} e^{-i n \pi \omega / a \Omega} \widehat{g}_{a}(\omega)$, on $[-a \Omega, a \Omega]$, because $\widehat{g}_{a}(\omega)=1$ on $[-\Omega, \Omega]$ and $\widehat{f}(\omega)=0$ on $|\omega| \geq \Omega$.

Figure 1: Graph of \widehat{g}_{a}
(b) (5 pts.) Show that

$$
\begin{equation*}
g_{a}(t)=\frac{\cos (\Omega t)-\cos (a \Omega t)}{\pi(a-1) \Omega t^{2}} \tag{2}
\end{equation*}
$$

(c) (5 pts.) Use the previous two parts to show that

$$
\begin{equation*}
f(t)=\sum_{n=-\infty}^{\infty} \frac{\pi}{a \Omega} f\left(\frac{n \pi}{a \Omega}\right) g_{a}\left(t-\frac{n \pi}{a \Omega}\right) . \tag{3}
\end{equation*}
$$

(d) (10 pts.) Applying Parseval's theorem to the Fourier series (1), show that $\sum_{n \in \mathbb{Z}}\left|f\left(\frac{n \pi}{a \Omega}\right)\right|^{2}=\frac{a \Omega}{\pi}\|f\|_{L^{2}(\mathbb{R})}^{2}$. For all $|t| \leq \frac{N \pi}{2 a \Omega}$, show that $\left|f(t)-\sum_{|n| \leq N-1} \frac{\pi}{a \Omega} f\left(\frac{n \pi}{a \Omega}\right) g_{a}\left(t-\frac{n \pi}{a \Omega}\right)\right| \leq C\|f\|_{L^{2}(\mathbb{R})} N^{-3 / 2}$. What is the rate for the standard sampling series? Does oversampling improve the rate of convergence?
5. (15 pts.) Prove this version of Watson's lemma: Suppose that $F(x):=$ $\int_{-\infty}^{\infty} f(t) e^{-x t^{2}} d t$, where $f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ uniformly in $|t| \leq T$. In addition, for $|t| \geq T$, there is an $\alpha>0$ such that $|f(t)| \leq|t|^{\alpha}$. Show that

$$
F(x) \sim \sum_{k=0}^{\infty} a_{2 k} \Gamma\left(k+\frac{1}{2}\right) x^{-k-\frac{1}{2}}, x \rightarrow \infty
$$

