Name_____ 1

Midterm

Take-home part. This take-home part of the midterm is due Friday, 10/19/2012. You may consult any written or online source. You may *not* consult anyone, except your instructor

1. (25 pts.) Prove this: Let $m \ge 0$. If f is 2π -periodic and $f^{(m)}$ is piecewise smooth and c_r is the r^{th} Fourier coefficient for f, then, for all $r \ne 0$,

$$|c_r| \le C|r|^{-(m+1)},\tag{1}$$

where C is a constant independent of r.

2. Let f(x) be a continuous 2π -period function, with its N^{th} partial sum being $S_N(x) = \sum_{\ell=-N}^{N} c_{\ell} e^{i\ell x}$. Finally, let \mathcal{F}_n be the discrete Fourier transform on \mathcal{S}_n . In addition, for a given function g let

$$\mathcal{F}_n[g]_k = \sum_{j=0}^{n-1} g\left(\frac{2j\pi}{n}\right) \bar{w}^{jk}$$

- (a) (5 pts.) Show that $\frac{1}{n}\mathcal{F}_n[S_N]_k = c_k$, provided $N \leq (n-1)/2$.
- (b) **(10 pts.)** Show that $|c_k \frac{1}{n}\mathcal{F}_n[f]_k| \leq ||S_{\lfloor (n-1)/2 \rfloor} f||_{\infty}$, if $|k| \leq (n-1)/2$.
- (c) (10 pts.) Use part 2b above and equation (1) to show that if f is 2π -periodic and $f^{(m)}$ is piecewise smooth, then there is a constant C that is independent of k and n such that

$$|c_k - \frac{1}{n}\mathcal{F}_n[f]_k| \le Cn^{-m}, \text{ for } |k| \le (n-1)/2.$$

3. (25 pts.) Prove this version of the sampling theorem: Let $\Omega > 0$, $\lambda > 1$, and suppose that $f, g \in L^2$ are band-limited, with $\operatorname{supp} \hat{f} \subseteq [-\Omega, \Omega]$ and $\operatorname{supp} \hat{g} \subseteq [-\lambda\Omega, \lambda\Omega]$. If $\hat{g}(\omega) \in C(\mathbb{R})$ satisfies $\hat{g}(\omega) = 1$ on $[-\Omega, \Omega]$, then

$$f(t) = \frac{\pi}{\lambda\Omega} \sum_{n=-\infty}^{\infty} f\left(\frac{n\pi}{\lambda\Omega}\right) g\left(t - \frac{n\pi}{\lambda\Omega}\right)$$

4. (25 pts.) Consider the inner product for the Sobolev space $H^1(\mathbb{R})$,

$$\langle f,g \rangle_{H^1} := \int_{\mathbb{R}} (f'\bar{g}' + f\bar{g}) dx.$$

where f, g, f', g' are all in $L^2(\mathbb{R})$. Show that $H^1(\mathbb{R}) \subset C_0(\mathbb{R})$, and that if $\kappa(x) = e^{-|x|}/2$, then $f(x) = \langle f, \kappa(x-\cdot) \rangle_{H^1}$.