\qquad

Midterm

Take-home part. This take-home part of the midterm is due Friday, $10 / 19 / 2012$. You may consult any written or online source. You may not consult anyone, except your instructor

1. (25 pts.) Prove this: Let $m \geq 0$. If f is 2π-periodic and $f^{(m)}$ is piecewise smooth and c_{r} is the $r^{t h}$ Fourier coefficient for f, then, for all $r \neq 0$,

$$
\begin{equation*}
\left|c_{r}\right| \leq C|r|^{-(m+1)}, \tag{1}
\end{equation*}
$$

where C is a constant independent of r.
2. Let $f(x)$ be a continuous 2π-period function, with its $N^{\text {th }}$ partial sum being $S_{N}(x)=\sum_{\ell=-N}^{N} c_{\ell} e^{i \ell x}$. Finally, let \mathcal{F}_{n} be the discrete Fourier transform on \mathcal{S}_{n}. In addition, for a given function g let

$$
\mathcal{F}_{n}[g]_{k}=\sum_{j=0}^{n-1} g\left(\frac{2 j \pi}{n}\right) \bar{w}^{j k} .
$$

(a) (5 pts.) Show that $\frac{1}{n} \mathcal{F}_{n}\left[S_{N}\right]_{k}=c_{k}$, provided $N \leq(n-1) / 2$.
(b) (10 pts.) Show that $\left|c_{k}-\frac{1}{n} \mathcal{F}_{n}[f]_{k}\right| \leq\left\|S_{\lfloor(n-1) / 2\rfloor}-f\right\|_{\infty}$, if $|k| \leq(n-1) / 2$.
(c) ($\mathbf{1 0} \mathbf{~ p t s .) ~ U s e ~ p a r t ~ 2 b ~ a b o v e ~ a n d ~ e q u a t i o n ~ (1) ~ t o ~ s h o w ~ t h a t ~ i f ~}$ f is 2π-periodic and $f^{(m)}$ is piecewise smooth, then there is a constant C that is independent of k and n such that

$$
\left|c_{k}-\frac{1}{n} \mathcal{F}_{n}[f]_{k}\right| \leq C n^{-m}, \text { for }|k| \leq(n-1) / 2 .
$$

3. ($\mathbf{2 5}$ pts.) Prove this version of the sampling theorem: Let $\Omega>0$, $\lambda>1$, and suppose that $f, g \in L^{2}$ are band-limited, with $\operatorname{supp} \hat{f} \subseteq$ $[-\Omega, \Omega]$ and $\operatorname{supp} \hat{g} \subseteq[-\lambda \Omega, \lambda \Omega]$. If $\hat{g}(\omega) \in C(\mathbb{R})$ satisfies $\hat{g}(\omega)=1$ on $[-\Omega, \Omega]$, then

$$
f(t)=\frac{\pi}{\lambda \Omega} \sum_{n=-\infty}^{\infty} f\left(\frac{n \pi}{\lambda \Omega}\right) g\left(t-\frac{n \pi}{\lambda \Omega}\right)
$$

4. (25 pts.) Consider the inner product for the Sobolev space $H^{1}(\mathbb{R})$,

$$
\langle f, g\rangle_{H^{1}}:=\int_{\mathbb{R}}\left(f^{\prime} \bar{g}^{\prime}+f \bar{g}\right) d x
$$

where $f, g, f^{\prime}, g^{\prime}$ are all in $L^{2}(\mathbb{R})$. Show that $H^{1}(\mathbb{R}) \subset C_{0}(\mathbb{R})$, and that if $\kappa(x)=e^{-|x|} / 2$, then $f(x)=\langle f, \kappa(x-\cdot)\rangle_{H^{1}}$.

