The Cauchy-Goursat Theorem

Theorem. Suppose U is a simply connected domain and $f: U \to \mathbb{C}$ is \mathbb{C} -differentiable. Then

$$\int_{\Delta} f \, dz = 0$$

for any triangular path Δ in U.

Proof. Let Δ be a triangular path in U, i.e. a closed polygonal path $[z_1, z_2, z_3, z_1]$ with three points $z_1, z_2, z_3 \in U$. Let

$$M = \left| \int_{\Delta} f \, dz \right|, \qquad \ell = \operatorname{perimeter}(\Delta).$$

We show M = 0.

Step 1: Divide and conquer. By connecting the three midpoints of each segment, we can divide Δ into four smaller, similar triangles, $\Delta_a, \Delta_b, \Delta_c, \Delta_d$. If we orient each subtriangle the same way as Δ , then after cancelling the three segments crossed twice we get

$$\int_{\Delta} f \, dz = \int_{\Delta_a} f \, dz + \int_{\Delta_b} f \, dz + \int_{\Delta_c} f \, dz + \int_{\Delta_d} f \, dz$$

It must therefore follow that for one of the triangles, call it Δ_1 , we must have

$$\left| \int_{\Delta_1} f \, dz \right| \ge \frac{M}{4},$$

for otherwise

Step 2: Get the limit point z^* . Repeat this argument on Δ_1 now. We obtain, by induction, a sequence of triangles (Δ_n) with the following properties:

$$\Delta_1 \supset \Delta_2 \supset \Delta_3 \supset \cdots, \quad \text{perimeter}(\Delta_n) = \frac{\ell}{2^n}, \quad \left| \int_{\Delta_n} f \, dz \right| \ge \frac{M}{4^n}.$$

Since the triangles bounded by Δ_n are compact and their diameters (which are bounded above by their perimeters) tend to 0, we conclude there exists a unique point z^* contained inside every Δ_n .

Step 3: Use differentiability to give M the squeeze. Now, let $\epsilon > 0$ be arbitrary. Since f is analytic at the point $z^* \in U$, there exists $\delta > 0$ such that

$$|z-z^*| < \delta \Longrightarrow \left| \frac{f(z) - f(z^*)}{z - z^*} - f'(z^*) \right| < \epsilon \Longrightarrow \left| f(z) - f(z^*) - f'(z^*)(z - z^*) \right| < \epsilon |z - z^*|.$$

Choose n so large that $\operatorname{perimeter}(\Delta_n) < \delta$.

Since 1 and z have complex antiderivatives defined for all of \mathbb{C} , the complex Fundamental Theorem of Calculus implies

$$\int_{\Delta_n} 1 \, dz = \int_{\Delta_n} z \, dz = 0,$$

whence

$$\int_{\Delta_n} f(z) - f(z^*) - f'(z^*)(z - z^*) dz$$

= $\int_{\Delta_n} f(z) dz - \int_{\Delta_n} f(z^*) dz - \int_{\Delta_n} f'(z^*)(z - z^*) dz$
= $\int_{\Delta_n} f(z) dz - (f(z^*) + f'(z^*)z^*) \int_{\Delta_n} 1 dz - f'(z^*) \int_{\Delta_n} z dz$
= $\int_{\Delta_n} f(z) dz - 0 - 0 = \int_{\Delta_n} f(z) dz.$

Now, observe that for any $z \in \Delta_n$,

$$|z - z^*| < ext{perimeter}(\Delta_n) = \frac{\ell}{2^n} < \delta_n$$

so that

$$\begin{split} \frac{M}{4^n} &\leq \left| \int_{\Delta_n} f(z) \, dz \right| = \left| \int_{\Delta_n} f(z) - f(z^*) - f'(z^*)(z - z^*) \, dz \right| \\ &\leq \int_{\Delta_n} \left| f(z) - f(z^*) - f'(z^*)(z - z^*) \right| \left| dz \right| \leq \int_{\Delta_n} \epsilon |z - z^*| \left| dz \right| \\ &\leq \int_{\Delta_n} \epsilon \cdot \frac{\ell}{2^n} \left| dz \right| = \epsilon \cdot \frac{\ell}{2^n} \cdot \frac{\ell}{2^n} = \frac{\epsilon \, \ell^2}{4^n}. \end{split}$$

Therefore, examining either end of the intequality, we conclude

$$0 \le M \le \epsilon \, \ell^2.$$

But $\epsilon > 0$ was abritary, whence letting $\epsilon \to 0$ above implies M = 0. \Box