The Cauchy-Goursat Theorem

Theorem. Suppose U is a simply connected domain and $f: U \rightarrow \mathbb{C}$ is \mathbb{C}-differentiable. Then

$$
\int_{\Delta} f d z=0
$$

for any triangular path Δ in U.
Proof. Let Δ be a triangular path in U, i.e. a closed polygonal path $\left[z_{1}, z_{2}, z_{3}, z_{1}\right]$ with three points $z_{1}, z_{2}, z_{3} \in U$. Let

$$
M=\left|\int_{\Delta} f d z\right|, \quad \ell=\operatorname{perimeter}(\Delta)
$$

We show $M=0$.

Step 1: Divide and conquer. By connecting the three midpoints of each segment, we can divide Δ into four smaller, similar triangles, $\Delta_{a}, \Delta_{b}, \Delta_{c}, \Delta_{d}$. If we orient each subtriangle the same way as Δ, then after cancelling the three segments crossed twice we get

$$
\int_{\Delta} f d z=\int_{\Delta_{a}} f d z+\int_{\Delta_{b}} f d z+\int_{\Delta_{c}} f d z+\int_{\Delta_{d}} f d z
$$

It must therefore follow that for one of the triangles, call it Δ_{1}, we must have

$$
\left|\int_{\Delta_{1}} f d z\right| \geq \frac{M}{4}
$$

for otherwise

$$
M=\left|\int_{\Delta} f d z\right| \leq\left|\int_{\Delta_{a}} f d z\right|+\left|\int_{\Delta_{b}} f d z\right|+\left|\int_{\Delta_{c}} f d z\right|+\left|\int_{\Delta_{d}} f d z\right|<M
$$

Step 2: Get the limit point z^{*}. Repeat this argument on Δ_{1} now. We obtain, by induction, a sequence of triangles $\left(\Delta_{n}\right)$ with the following properties:

$$
\Delta_{1} \supset \Delta_{2} \supset \Delta_{3} \supset \cdots, \quad \operatorname{perimeter}\left(\Delta_{n}\right)=\frac{\ell}{2^{n}}, \quad\left|\int_{\Delta_{n}} f d z\right| \geq \frac{M}{4^{n}}
$$

Since the triangles bounded by Δ_{n} are compact and their diameters (which are bounded above by their perimeters) tend to 0 , we conclude there exists a unique point z^{*} contained inside every Δ_{n}.

Step 3: Use differentiability to give M the squeeze. Now, let $\epsilon>0$ be arbitrary. Since f is analytic at the point $z^{*} \in U$, there exists $\delta>0$ such that

$$
\left|z-z^{*}\right|<\delta \Longrightarrow\left|\frac{f(z)-f\left(z^{*}\right)}{z-z *}-f^{\prime}(z *)\right|<\epsilon \Longrightarrow\left|f(z)-f\left(z^{*}\right)-f^{\prime}(z *)\left(z-z^{*}\right)\right|<\epsilon\left|z-z^{*}\right|
$$

Choose n so large that perimeter $\left(\Delta_{n}\right)<\delta$.
Since 1 and z have complex antiderivatives defined for all of \mathbb{C}, the complex Fundamental Theorem of Calculus implies

$$
\int_{\Delta_{n}} 1 d z=\int_{\Delta_{n}} z d z=0
$$

whence

$$
\begin{array}{rl}
\int_{\Delta_{n}} & f(z)-f\left(z^{*}\right)-f^{\prime}(z *)\left(z-z^{*}\right) d z \\
& =\int_{\Delta_{n}} f(z) d z-\int_{\Delta_{n}} f\left(z^{*}\right) d z-\int_{\Delta_{n}} f^{\prime}\left(z^{*}\right)\left(z-z^{*}\right) d z \\
& =\int_{\Delta_{n}} f(z) d z-\left(f\left(z^{*}\right)+f^{\prime}\left(z^{*}\right) z^{*}\right) \int_{\Delta_{n}} 1 d z-f^{\prime}\left(z^{*}\right) \int_{\Delta_{n}} z d z \\
& =\int_{\Delta_{n}} f(z) d z-0-0=\int_{\Delta_{n}} f(z) d z
\end{array}
$$

Now, observe that for any $z \in \Delta_{n}$,

$$
\left|z-z^{*}\right|<\operatorname{perimeter}\left(\Delta_{n}\right)=\frac{\ell}{2^{n}}<\delta
$$

so that

$$
\begin{aligned}
\frac{M}{4^{n}} & \leq\left|\int_{\Delta_{n}} f(z) d z\right|=\left|\int_{\Delta_{n}} f(z)-f\left(z^{*}\right)-f^{\prime}\left(z^{*}\right)\left(z-z^{*}\right) d z\right| \\
& \leq \int_{\Delta_{n}}\left|f(z)-f\left(z^{*}\right)-f^{\prime}\left(z^{*}\right)\left(z-z^{*}\right)\right||d z| \leq \int_{\Delta_{n}} \epsilon\left|z-z^{*}\right||d z| \\
& \leq \int_{\Delta_{n}} \epsilon \cdot \frac{\ell}{2^{n}}|d z|=\epsilon \cdot \frac{\ell}{2^{n}} \cdot \frac{\ell}{2^{n}}=\frac{\epsilon \ell^{2}}{4^{n}}
\end{aligned}
$$

Therefore, examining either end of the intequality, we conclude

$$
0 \leq M \leq \epsilon \ell^{2}
$$

But $\epsilon>0$ was abritary, whence letting $\epsilon \rightarrow 0$ above implies $M=0$.

