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x1. Solutions to linear Systems

In this section we review facts about solutions to system of linear equations. We begin by

converting the system

S :

8>><
>>:

a11x1 + : : :+ a1nxn = b1

...
...

am1x1 + : : :+ amnxn = bm

into the equivalent matrix form,

0
@
a11 : : : a1n
... : : :

...

am1 : : : amn

1
AX = b :

This of course is the equation AX = b, with A being the m�n coe�cient matrix for S, X

being the n� 1 vector of unknowns, and b being the m� 1 vector of bj 's. The augmented

form of the system is

[Ajb] =

0
B@
a11 : : : a1n b1
... : : :

...
...

am1 : : : amn bm

1
CA :

In view of the connection between row operations and operations on the individual equa-

tions comprising the system S, any matrix [A0jb0] that is row equivalent to the original

system [Ajb] is the augmented matrix for a system S0 equivalent (i.e., having the same

solution set) to S. Let us state this formally.

Theorem 1.1: If [Ajb] and [A0jb0] are augmented matrices for two linear systems of

equations S and S0, and if [Ajb] and [A0jb0] are row equivalent, then S and S0 are equivalent

systems.

For the system S, reduced-echelon matrix equivalent to the augmented matrix [Ajb]

is very important; it tells what the set of solutions is, and it also gives information about

the dimensions of the row and column spaces. We shall discuss these things in the next

few paragraphs. Before doing so, we need to make one important de�nition:
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Definition: The rank of a matrix M is the number of nonzero rows in its reduced

echelon form; we will denote the rank of M by rank(M).

One can use Theorem 1.1 to obtain the following result, which we state without proof.

Theorem 1.2: Consider the system S. We have these possibilities:

i. S is inconsistent if and only if rank(A) < rank([Ajb]).

ii. S has a unique solution if and only if rank(A) = rank([Ajb]) = n :

iii. S will have in�nitely many solutions if and only if rank(A) = rank([Ajb]) < n :

We need to illustrate the use of this theorem. To do that, look at the simple systems

below.

2x1 + 3x2 = 8

3x1 � 2x2 = �1

3x1 + 2x2 = 3

�6x1 � 4x2 = 0

3x1 + 2x2 = 3

�6x1 � 4x2 = �6

The augmented matrices for these systems are, respectively,

�
2 3 8

3 �2 �1

� �
3 2 3

�6 �4 0

� �
3 2 3

�6 �4 �6

�
:

Applying the row-reduction algorithm yields the row-reduced form of each of these aug-

mented matrices. The result is, again respectively,

�
1 0 1

0 1 2

� �
1 2=3 0

0 0 1

� �
1 2=3 1

0 0 0

�
:

From each of these row-reduced versions of the augmented matrices, one can read o� the

rank of the coe�cient matrix as well as the rank of the augmented matrix. Applying

Theorem 1.2 to each of these tells us the number of solutions to expect for each of the

corresponding systems. We summarize our �ndings in the table below.

System rank(A) rank([Ajb]) n # of solutions

First 2 2 2 1

Second 1 2 2 0 (inconsistent)

Third 1 1 2 1

We now turn to the discussion of homogeneous sytems, which are systems having the

vector b = 0. By simply plugging X = 0 into the equation AX = 0, we see that every

homogeneous system has at least one solution, the trivial solution X = 0. Are there any

others? To answer this, we can use this corollary to Theorem 1.2:

Corollary 1.3: A homogeneous system of equations AX = 0 will have a unique

solution, the trivial solution X = 0, if and only if rank(A) = n. In all other cases, it

will have in�nitely many solutions. As a consequence, if n > m|i.e., if the number of

unknowns is larger than the number of equations|, then the system will have in�niely

many solutions.
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Proof: Since X = 0 is always a solution, case (i) of Theorem 1.2 is eliminated as a

possibility. Therefore, we must always have rank(A) = rank([Aj0]) � n. By Theorem 1.2,

case (ii), equality will hold if and only if X = 0 is the only solution. When it does not

hold, we are always in case (iii) of Theorem 1.2; there are thus in�nitely many solutions

for the system. If n > m, then we need only note that rank(A) � m < n to see that the

system has to have in�nitely solutions.

x2. Solving Linear Systems

Thus far we have discussed how many solutions a system of linear equations has. In this

section, we will review �nding these solutions. The key to the whole process is row-reducing

the augmented matrix for the original system, S.

Let us look at an example. Suppose that we have found that our system has an

augmented matrix [Ajb] that is row equivalent to the matrix

[A0
jb0] =

0
B@
1 2 0 0 0 �1

0 0 1 0 �3 7

0 0 0 1 3 4

0 0 0 0 0 0

1
CA :

We now convert this back to a system, one that is of course equivalent to whatever one we

started with. The result is the following system of equations:

x1 + 2x2 = �1

x3 � 3x5 = 7

x4 + 3x5 = 4

:

Notice that the variables corresponding to the leading columns appear in this set only

once. That means that they can be solved for in terms of the other variables. Solving for

these \leading" variables results in the system

x1 = �2x2 � 1

x3 = 3x5 + 7

x4 = �3x5 + 4

:

It turns out that by assigning arbitrary values to the non-leading variables gives us all

possible solutions to the system. It is customary to show that this assignment has been

made by assigning new letters to the non-leading variables. In our example, we could set

x2 = s, x5 = t, and then rewrite the whole solution in the column form shown below.

X =

0
BBB@

x1
x2
x3
x4
x5

1
CCCA =

0
BBB@

�2s� 1

s

3t+ 7

�3t+ 4

t

1
CCCA = s

0
BBB@

�2

1

0

0

0

1
CCCA+ t

0
BBB@

0

0

3

�3

1

1
CCCA+

0
BBB@

�1

0

7

4

0

1
CCCA :

Written in this way, we see that if we set s = t = 0, we get a particular solution to

the original system. When this column is subtracted o�, what is left is a solution to the
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corresponding homogeneous system. This happens in every case: A solution to AX = b

may be written Xp +Xh, where Xp is a �xed column vector satisfying AXp = b, and Xh

runs over all solutions to AXh = 0. This is exactly analogous to what happens in the case

of linear di�erential equations.

x3. Applications to Finding Bases

Row-reduction methods can be used to �nd bases. Let us now look at an example illustrat-

ing how to obtain information about bases for the null-space or kernel, the column space

or range, and the row-space of a matrix A, given the row-reduced matrix R equivalent to

it. To begin, note th at using row reduction gives

A =

0
@1 1 2 0

2 4 2 4

2 1 5 �2

1
A() R =

0
@1 0 3 �2

0 1 �1 2

0 0 0 0

1
A :

3.1. The Null Space. Because A and R are row equivalent, the null-spaces for A and

R are identical. The equations we get from �nding the null-space of R are

x1 + 3x3 � 2x4 = 0

x2 � x3 + 2x4 = 0:

The dependent (constrained) variables correspond to the columns containing the leading

entries (these are in boldface) in R; these are x1 and x2. The remaining variables, x3 and

x4, are independent (free) variables. To emphasize this, we assign them new labels, x3 = s

and x4 = t. Solving the system obtained above, we get

X =

0
B@
x1
x2
x3
x4

1
CA = s

0
B@
�3

1

1

0

1
CA+ t

0
B@

2

�2

0

1

1
CA :

From this equation, it is easy to show that the vectors multiplying s and t form a basis for

the null space.

3.2. The column Space. Using the fact that AX = 0 for arbitrary s and t, we also

obtain these equations relating the four columns of A :

C3 = 3C1 � C2 and C4 = �2C1 + 2C2 :

Thus the column space is spanned by the set fC1; C2g. (C1 and C2 are in boldface in the

matrix A above.) This set is also linearly independent because the equation

0 = x1C1 + x2C2 = x1C1 + x2C2 + 0C3 + 0C4 = A (x1 x2 0 0 )
T

implies that (x1 x2 0 0 )
T
is in the null space of A. Matching this vector with the

general form of a vector in the null space shows that the corresponding s and t are 0, and
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therefore so are x1 and x2. It follows that fC1; C2g is linearly independent. Since it spans

the columns as well, it is a basis for the range of A. Note that these columns correspond

to the dependent variables in the problems, x1 and x2. This is no accident. The argument

that we used can be employed to show that this is true in general:

Theorem 3.1: In a matrix A, the columns of A that correspond to the dependent

variables in the associated homogeneous problem, AX = 0, form a basis for the column-

space (range) of A.

3.3. The Row Space. Row operations preserve the row space. They involve either

taking linear combinations of rows or interchanging rows, both of which leave the span of

the rows unchanged. (They do change the column space, however.) Because row operations

are reversible, the orignal set of rows can be obtained from the rows of the reduced echelon

form of the matrix. Thus, the rows of the latter also span the row space. Moreover, they

are linearly independent.

Theorem 3.2: The rows of the reduced echelon form of a matrix comprise a basis

for its row space.

Returning to the example we started with, a basis for the row space of A consists of

the non-zero rows of R, f( 1 0 3 �2 ) ; ( 0 1 �1 2 )g.

5


