Residues and Contour Integration Problems

Classify the singularity of $f(z)$ at the indicated point.

1. $f(z)=\cot (z)$ at $z=0$. Ans. Simple pole.

Solution. The test for a simple pole at $z=0$ is that $\lim _{z \rightarrow 0} z \cot (z)$ exists and is not 0 . We can use L' Hôpital's rule:

$$
\lim _{z \rightarrow 0} z \cot (z)=\lim _{z \rightarrow 0} \frac{z \cos (z)}{\sin (z)}=\lim _{z \rightarrow 0} \frac{\cos (z)-z \sin (z)}{\cos (z)}=1
$$

Thus the singularity is a simple pole.
2. $f(z)=\frac{1+\cos (z)}{(z-\pi)^{2}}$ at $z=\pi$. Ans. Removable.

Solution. Power series is the simplest way to do this. We can expand $\cos (z)$ in a Taylor series about $z=\pi$. To do so, use the trig identity $\cos (z)=-\cos (z-\pi)$. Next, expand $1-\cos (z-\pi)$ in a power series in $z-\pi$:

$$
1+\cos (z)=1-\cos (z-\pi)=\frac{1}{2!}(z-\pi)^{2}-\frac{1}{4!}(z-\pi)^{4}+\cdots
$$

From this, we get

$$
\frac{1+\cos (z)}{(z-\pi)^{2}}=\frac{(z-\pi)^{2}\left(\frac{1}{2}-\frac{1}{4!}(z-\pi)^{2}+\cdots\right)}{(z-\pi)^{2}}=\frac{1}{2}-\frac{1}{4!}(z-\pi)^{2}+\cdots,
$$

which is the Laurent series for $\frac{1+\cos (z)}{(z-\pi)^{2}}$. Since there are no negative powers in the series, the singularity is removable.
3. $f(z)=\sin (1 / z)$. Ans. Essential singularity.
4. $f(z)=\frac{z^{2}-z}{z^{2}+2 z+1}$ at $z=-1$. Ans. Pole of order 2 .
5. $f(z)=z^{-3} \sin (z)$ at $z=0$. Ans. Pole of order 2 .
6. $f(z)=\csc (z) \cot (z)$ at $z=0$. Ans. Pole of order 2 .

Find the residue of $g(z)$ at the indicated singulatity.
7. $g(z)=\frac{1}{z^{2}+1}$ at $z=-i$. Ans. $\operatorname{Res}_{-i}(g)=\frac{1}{2} i$.

Solution. Since $g(z)=\frac{1}{(z-i)(z+i)}$, we have that $(z+i) g(z)=\frac{1}{z-i}$, which is analytic and nonzero at $z=-i$. Hence, $g(z)$ has a simple pole at $z=-i$. The residue is thus $\operatorname{Res}_{-i}(g)=\lim _{z \rightarrow-i}(z+i) g(z)=\frac{1}{-2 i}=\frac{1}{2} i$
8. $g(z)=\frac{e^{z}}{z^{3}}$ at $z=0$. Ans. $\operatorname{Res}_{0}(g)=\frac{1}{2}$.

Solution. Using the power series for e^{z}, we see that the Laurent series for $g(z)$ about $z=0$ is
$\frac{e^{z}}{z^{3}}=\frac{1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\frac{1}{4!} z^{4}+\cdots}{z^{3}}=z^{-3}+z^{-2}+\frac{1}{2!} z^{-1}+\frac{1}{3!}+\frac{1}{4!} z+\cdots$
The the residue is a_{-1}, the coefficient of z^{-1}. Hence, $\operatorname{Res}_{0}(g)=a_{-1}=\frac{1}{2}$.
9. $g(z)=\tan (z)$ at $z=\pi / 2$. Ans. $\operatorname{Res}_{\pi / 2}(g)=-1$.
10. $g(z)=\frac{z+2}{\left(z^{2}-2 z+1\right)^{2}}$ at $z=1$. Ans. $\operatorname{Res}_{1}(g)=1$.
11. $g(z)=f(z) / h(z)$ at $z=z_{0}$, given that $f\left(z_{0}\right) \neq 0, h\left(z_{0}\right)=0$, and $h^{\prime}\left(z_{0}\right) \neq 0$. Show that $z=z_{0}$ is a simple pole and find $\operatorname{Res}_{z_{0}}(g)$. Ans. $\operatorname{Res}_{z_{0}}(g)=f\left(z_{0}\right) / h^{\prime}\left(z_{0}\right)$.

The singularities for the functions below are all simple poles. Find all of them and use exercise 11 above to find the residues at them.
12. $g(z)=\frac{z^{2}-1}{z^{2}-5 i z-4}$. Ans. The singularities are at i and $4 i$ and the residues are $\operatorname{Res}_{i}(g)=-\frac{2}{3} i$ and $\operatorname{Res}_{4 i}(g)=\frac{17}{3} i$.
Solution. The singularities are the roots of $z^{2}-5 i z-4=0$, which are i and $4 i$. In our case, the functions f and h in exercise 11 are $f(z)=z^{2}-1$ and $h(z)=z^{2}-5 i z-4$, and $f(z) / h^{\prime}(z)=\left(z^{2}-1\right) /(2 z-5 i)$. It immediately follows that

$$
\operatorname{Res}_{i}(g)=\frac{i^{2}-1}{2 i-5 i}=\frac{-2}{-3 i}=-\frac{2}{3} i .
$$

The other residue follows similarly.
13. $g(z)=\tan (z)$. Ans. The singularities are at $z_{n}=\left(n+\frac{1}{2}\right) \pi$, where $n=0, \pm 1, \pm 2, \ldots$, and the residues at $z_{n} \operatorname{are~}_{\operatorname{Res}_{z_{n}}}(g)=-1$.
14. $g(z)=\frac{z^{2}}{z^{3}-8}$. Ans. The singularities are at the roots of $z^{3}-8=0$. There are three of these: $2,2 e^{2 i \pi / 3}$ and $2 e^{4 i \pi / 3}$. The residues at these three points are all $1 / 3$.
15. $g(z)=\frac{e^{z}}{\sin (z)}$. Ans. The singularities are at the roots of $\sin (z)=0$, which are $n \pi, n=0, \pm 1, \pm 2, \ldots$, and the residues there are $\operatorname{Res}_{n \pi}(g)=$ $(-1)^{n} e^{n \pi}$.
16. $g(z)=\frac{\sin (z)}{z^{2}-3 z+2}$. Ans. The singularities are at the roots of $z^{2}-3 z+2=0$, which are 1 and 2 . The residues are $\operatorname{Res}_{1}(g)=-\sin (1)$ and $\operatorname{Res}_{2}(g)=$ $\sin (2)$.

Use the residue theorem to evaluate the contour intergals below. Where possible, you may use the results from any of the previous exercises.
17. $\oint_{C} \frac{z^{2}}{z^{3}-8} d z$, where C is the counterclockwise oriented circle with radius 1 and center $3 / 2$. Ans. $2 \pi i / 3$.
Solution. From exercise 14, $g(z)$ has three singularities, located at 2 , $2 e^{2 i \pi / 3}$ and $2 e^{4 i \pi / 3}$. A simple sketch of C shows that only 2 is inside of C. Thus, by the residue theorem and exercise 14 , we have

$$
\oint_{C} \frac{z^{2}}{z^{3}-8} d z=2 \pi i \operatorname{Res}_{2}(g)=2 \pi i / 3=2 \pi i / 3
$$

18. $\oint_{C} \frac{z^{2}}{z^{3}-8} d z$, where C is the counterclockwise oriented circle with radius 3 and center 0 . Ans. $2 \pi i$.
19. $\oint_{C} \frac{z^{2}-1}{z^{2}-5 i z-4} d z$, where C is any simple closed curve that is positively oriented (i.e., counterclockwise) and encloses the following points: (a) only i; (b) only $4 i$; (c) both i and $4 i$; (d) neither i nor $4 i$. Ans. (a) $4 \pi / 3$. (b) $-34 \pi / 3$. (c) -10π. (d) 0 .
20. $\oint_{C} \frac{e^{z}}{\sin (z)} d z$, where C is the positively traversed rectangle with corners $-\pi / 2-i, 5 \pi / 2-i,-\pi / 2+2 i$ and $5 \pi / 2+2 i$. Ans. $2 \pi i\left(1-e^{\pi}+e^{2 \pi}\right)$.
21. $\oint_{C} \frac{z+2}{\left(z^{2}-2 z+1\right)^{2}} d z$, where C is the positively oriented semicircle that is located in the right half plane and has center 0 , radius $R>1$, and diameter located on the imaginary axis. Ans. 0 .
Solution. From exercise 10, the only singularity of the integrand is at 1. By the residue theorem and exercise 10, we have

$$
\oint_{C} \frac{z+2}{\left(z^{2}-2 z+1\right)^{2}} d z=2 \pi i \operatorname{Res}_{1}(g)=2 \pi i \cdot 1=2 \pi i .
$$

22. $\oint_{C} \frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)} d z$, where C is the negatively oriented (i.e., clockwise) semicircle that is located in the upper half plane and has center 0 , radius $R>2$, and diameter located on the real axis. Ans. $-\pi / 6$.

Find the values of the definite integrals below by contour-integral methods.
23. $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin (\theta)}$. Ans. $\pi / 2$.

Solution. Begin by converting this integral into a contour integral over C, which is a circle of radius 1 and center 0 , oriented positively. To do this, let $z=e^{i \theta}$. Note that $d z=i e^{i \theta} d \theta=i z d \theta$, so $d \theta=d z /(i z)$. Also, $\sin (\theta)=\left(z-z^{-1}\right) /(2 i)$. We thus have

$$
\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin (\theta)}=\oint_{C} \frac{d z}{i z\left(5-\frac{3 z-3 / z}{2 i}\right)}=\oint_{C} \frac{(-2) d z}{3 z^{2}-10 i z-3}
$$

The integrand has singularities at $z_{ \pm}=(10 i \pm 8 i) / 6=\left\{\begin{array}{c}3 i \\ i / 3 .\end{array}\right.$ Only $z_{-}=i / 3$ is inside C. It is a simple pole because the integrand has the form $f(z) /(z-i / 3)$, where f is analytic at $i / 3$. Using exercise 11, we see that

$$
\operatorname{Res}_{i / 3}\left(\frac{(-2)}{3 z^{2}-10 i z-3}\right)=\frac{-2}{6 z_{-}-10 i}=\frac{-2}{6 i / 3-10 i}=-i / 4 .
$$

The residue theorem then implies that

$$
\oint_{C} \frac{(-2) d z}{3 z^{2}-10 i z-3}=2 \pi i \operatorname{Res}_{i / 3}\left(\frac{(-2}{3 z^{2}-10 i z-3}\right)=\pi / 2
$$

24. $\int_{0}^{2 \pi} \frac{d \theta}{3-2 \cos (\theta)}$. Ans. $2 \pi / \sqrt{5}$.

Solution. Begin by converting this integral into a contour integral over C, which is a circle of radius 1 and center 0 , oriented positively. To do this, let $z=e^{i \theta}$. Note that $d z=i e^{i \theta} d \theta=i z d \theta$, so $d \theta=d z /(i z)$. Also, $\cos (\theta)=\left(z+z^{-1}\right) / 2$. We thus have

$$
\int_{0}^{2 \pi} \frac{d \theta}{3-2 \cos (\theta)}=\oint_{C} \frac{d z}{i z(3-z-1 / z)}=\oint_{C} \frac{i d z}{z^{2}-3 z+1} .
$$

The integrand has singularities at $z_{ \pm}=(3 \pm \sqrt{5}) / 2$. Only $z_{-}=(3-$ $\sqrt{5}) / 2$ is inside C. It is a simple pole because the integrand has the form $f(z) /(z-(3-\sqrt{5}) / 2)$), where f is analytic at $(3-\sqrt{5}) / 2$. Using exercise 11, we see that

$$
\operatorname{Res}_{3-\sqrt{5}) / 2}\left(\frac{i}{z^{2}-3 z+1}\right)=\frac{i}{2 z_{-} 3}=-\frac{i}{\sqrt{5}} .
$$

The residue theorem then implies that

$$
\oint_{C} \frac{i d z}{z^{2}-3 z+1}=2 \pi i \operatorname{Res}_{3-\sqrt{5}) / 2}\left(\frac{i}{z^{2}-3 z+1}\right)=\frac{2 \pi}{\sqrt{5}} .
$$

25. $\int_{0}^{2 \pi} \frac{d \theta}{5-4 \sin (\theta)}$. Ans. $2 \pi / 3$.
26. $\int_{0}^{2 \pi} \frac{\cos (\theta) d \theta}{13+12 \cos (\theta)}$. Ans. $-4 \pi / 15$. (This has two simple poles within the contour.)
27. $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$. Ans. $\pi / 6$. (Hint: reverse the contour in exercise 22 and let $R \rightarrow \infty$.)
