
Residues and Contour Integration Problems

Classify the singularity of f(z) at the indicated point.

1. f(z) = cot(z) at z = 0. Ans. Simple pole.

Solution. The test for a simple pole at z = 0 is that limz→0 z cot(z)
exists and is not 0. We can use L’ Hôpital’s rule:

lim
z→0

z cot(z) = lim
z→0

z cos(z)

sin(z)
= lim

z→0

cos(z)− z sin(z)

cos(z)
= 1.

Thus the singularity is a simple pole.

2. f(z) = 1+cos(z)
(z−π)2 at z = π. Ans. Removable.

Solution. Power series is the simplest way to do this. We can expand
cos(z) in a Taylor series about z = π. To do so, use the trig identity
cos(z) = − cos(z − π). Next, expand 1 − cos(z − π) in a power series
in z − π:

1 + cos(z) = 1− cos(z − π) =
1

2!
(z − π)2 − 1

4!
(z − π)4 + · · ·

From this, we get

1 + cos(z)

(z − π)2
=

(z − π)2(1
2
− 1

4!
(z − π)2 + · · · )

(z − π)2
=

1

2
− 1

4!
(z − π)2 + · · · ,

which is the Laurent series for 1+cos(z)
(z−π)2 . Since there are no negative

powers in the series, the singularity is removable.

3. f(z) = sin(1/z). Ans. Essential singularity.

4. f(z) = z2−z
z2+2z+1

at z = −1. Ans. Pole of order 2.

5. f(z) = z−3 sin(z) at z = 0. Ans. Pole of order 2.

6. f(z) = csc(z) cot(z) at z = 0. Ans. Pole of order 2.
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Find the residue of g(z) at the indicated singulatity.

7. g(z) = 1
z2+1

at z = −i. Ans. Res−i(g) = 1
2
i.

Solution. Since g(z) = 1
(z−i)(z+i) , we have that (z + i)g(z) = 1

z−i , which

is analytic and nonzero at z = −i. Hence, g(z) has a simple pole at
z = −i. The residue is thus Res−i(g) = limz→−i(z + i)g(z) = 1

−2i = 1
2
i

8. g(z) = ez

z3
at z = 0. Ans. Res0(g) = 1

2
.

Solution. Using the power series for ez, we see that the Laurent series
for g(z) about z = 0 is

ez

z3
=

1 + z + 1
2!
z2 + 1

3!
z3 + 1

4!
z4 + · · ·

z3
= z−3+z−2+

1

2!
z−1+

1

3!
+

1

4!
z+· · ·

The the residue is a−1, the coefficient of z−1. Hence, Res0(g) = a−1 = 1
2
.

9. g(z) = tan(z) at z = π/2. Ans. Resπ/2(g) = −1.

10. g(z) = z+2
(z2−2z+1)2

at z = 1. Ans. Res1(g) = 1.

11. g(z) = f(z)/h(z) at z = z0, given that f(z0) 6= 0, h(z0) = 0, and
h′(z0) 6= 0. Show that z = z0 is a simple pole and find Resz0(g). Ans.
Resz0(g) = f(z0)/h

′(z0).

The singularities for the functions below are all simple poles. Find all of
them and use exercise 11 above to find the residues at them.

12. g(z) = z2−1
z2−5iz−4 . Ans. The singularities are at i and 4i and the residues

are Resi(g) = −2
3
i and Res4i(g) = 17

3
i.

Solution. The singularities are the roots of z2 − 5iz − 4 = 0, which
are i and 4i. In our case, the functions f and h in exercise 11 are
f(z) = z2−1 and h(z) = z2−5iz−4, and f(z)/h′(z) = (z2−1)/(2z−5i).
It immediately follows that

Resi(g) =
i2 − 1

2i− 5i
=
−2

−3i
= −2

3
i.

The other residue follows similarly.
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13. g(z) = tan(z). Ans. The singularities are at zn = (n + 1
2
)π, where

n = 0,±1,±2, . . ., and the residues at zn are Reszn(g) = −1.

14. g(z) = z2

z3−8 . Ans. The singularities are at the roots of z3 − 8 = 0.

There are three of these: 2, 2e2iπ/3 and 2e4iπ/3. The residues at these
three points are all 1/3.

15. g(z) = ez

sin(z)
. Ans. The singularities are at the roots of sin(z) = 0,

which are nπ, n = 0,±1,±2, . . ., and the residues there are Resnπ(g) =
(−1)nenπ.

16. g(z) = sin(z)
z2−3z+2

. Ans. The singularities are at the roots of z2−3z+2 = 0,
which are 1 and 2. The residues are Res1(g) = − sin(1) and Res2(g) =
sin(2).

Use the residue theorem to evaluate the contour intergals below. Where pos-
sible, you may use the results from any of the previous exercises.

17.
∮
C

z2

z3−8dz, where C is the counterclockwise oriented circle with radius
1 and center 3/2. Ans. 2πi/3.

Solution. From exercise 14, g(z) has three singularities, located at 2,
2e2iπ/3 and 2e4iπ/3. A simple sketch of C shows that only 2 is inside of
C. Thus, by the residue theorem and exercise 14, we have∮

C

z2

z3 − 8
dz = 2πiRes2(g) = 2πi/3 = 2πi/3.

18.
∮
C

z2

z3−8dz, where C is the counterclockwise oriented circle with radius
3 and center 0. Ans. 2πi.

19.
∮
C

z2−1
z2−5iz−4dz, where C is any simple closed curve that is positively

oriented (i.e., counterclockwise) and encloses the following points: (a)
only i; (b) only 4i; (c) both i and 4i; (d) neither i nor 4i. Ans. (a)
4π/3. (b) −34π/3. (c) −10π. (d) 0.

20.
∮
C

ez

sin(z)
dz, where C is the positively traversed rectangle with corners

−π/2− i, 5π/2− i, −π/2 + 2i and 5π/2 + 2i. Ans. 2πi(1− eπ + e2π).
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21.
∮
C

z+2
(z2−2z+1)2

dz, where C is the positively oriented semicircle that is
located in the right half plane and has center 0, radius R > 1, and
diameter located on the imaginary axis. Ans. 0.

Solution. From exercise 10, the only singularity of the integrand is at
1. By the residue theorem and exercise 10, we have∮

C

z + 2

(z2 − 2z + 1)2
dz = 2πiRes1(g) = 2πi · 1 = 2πi.

22.
∮
C

1
(z2+1)(z2+4)

dz, where C is the negatively oriented (i.e., clockwise)
semicircle that is located in the upper half plane and has center 0,
radius R > 2, and diameter located on the real axis. Ans. −π/6.

Find the values of the definite integrals below by contour-integral methods.

23.
∫ 2π

0
dθ

5−3 sin(θ) . Ans. π/2.

Solution. Begin by converting this integral into a contour integral over
C, which is a circle of radius 1 and center 0, oriented positively. To do
this, let z = eiθ. Note that dz = ieiθdθ = izdθ, so dθ = dz/(iz). Also,
sin(θ) = (z − z−1)/(2i). We thus have∫ 2π

0

dθ

5− 3 sin(θ)
=

∮
C

dz

iz(5− 3z−3/z
2i

)
=

∮
C

(−2)dz

3z2 − 10iz − 3
.

The integrand has singularities at z± = (10i ± 8i)/6 =

{
3i
i/3.

Only

z− = i/3 is inside C. It is a simple pole because the integrand has the
form f(z)/(z − i/3), where f is analytic at i/3. Using exercise 11, we
see that

Resi/3

(
(−2)

3z2 − 10iz − 3

)
=

−2

6z− − 10i
=

−2

6i/3− 10i
= −i/4.

The residue theorem then implies that∮
C

(−2)dz

3z2 − 10iz − 3
= 2πiResi/3

(
(−2

3z2 − 10iz − 3

)
= π/2.
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24.
∫ 2π

0
dθ

3−2 cos(θ) . Ans. 2π/
√

5.

Solution. Begin by converting this integral into a contour integral over
C, which is a circle of radius 1 and center 0, oriented positively. To do
this, let z = eiθ. Note that dz = ieiθdθ = izdθ, so dθ = dz/(iz). Also,
cos(θ) = (z + z−1)/2. We thus have∫ 2π

0

dθ

3− 2 cos(θ)
=

∮
C

dz

iz(3− z − 1/z)
=

∮
C

idz

z2 − 3z + 1
.

The integrand has singularities at z± = (3 ±
√

5)/2. Only z− = (3 −√
5)/2 is inside C. It is a simple pole because the integrand has the

form f(z)/(z− (3−
√

5)/2)), where f is analytic at (3−
√

5)/2. Using
exercise 11, we see that

Res3−
√
5)/2

(
i

z2 − 3z + 1

)
=

i

2z−3
= − i√

5
.

The residue theorem then implies that∮
C

idz

z2 − 3z + 1
= 2πiRes3−

√
5)/2

(
i

z2 − 3z + 1

)
=

2π√
5
.

25.
∫ 2π

0
dθ

5−4 sin(θ) . Ans. 2π/3.

26.
∫ 2π

0
cos(θ)dθ

13+12 cos(θ)
. Ans. −4π/15. (This has two simple poles within the

contour.)

27.
∫∞
−∞

1
(x2+1)(x2+4)

dx. Ans. π/6. (Hint: reverse the contour in exercise 22

and let R→∞.)
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