## Coordinate Vectors and Examples

Coordinate vectors. This is a brief discussion of coordinate vectors and the notation for them that I presented in class. Here is the setup for all of the problems. We begin with a vector space $V$ that has a basis $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. We always keep the same order for vectors in the basis. Technically, this is called an ordered basis. If $\mathbf{v} \in V$, then we can always express $\mathbf{v} \in V$ in exactly one way as a linear combination of the the vectors in $B$. Specifically, for any $\mathbf{v} \in V$ there are scalars $x_{1}, \ldots, x_{n}$ such that

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n} .
$$

The $x_{j}$ 's are the coordinates of $\mathbf{v}$ relative to $B$. We collect them into the coordinate vector

$$
[\mathbf{v}]_{B}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

Examples. Here are some examples. Let $V=\mathcal{P}_{2}$ and $B=\left\{1, x, x^{2}\right\}$. What is the coordinate vector $\left[5+3 x-x^{2}\right]_{B}$ ? Answer:

$$
\left[5+3 x-x^{2}\right]_{B}=\left(\begin{array}{c}
5 \\
3 \\
-1
\end{array}\right) .
$$

If we ask the same question for $\left[5-x^{2}+3 x\right]_{B}$, the answer is the same, because to find the coordinate vector we have to order the basis elements so that they are in the same order as $B$.

Let's turn the question around. Suppose that we are given

$$
[p]_{B}=\left(\begin{array}{c}
3 \\
0 \\
-4
\end{array}\right),
$$

then what is $p$ ? Answer: $p(x)=3 \cdot 1+0 \cdot x+(-4) \cdot x^{2}=3-4 x^{2}$.
Let's try another space. Let $V=\operatorname{span}\left\{e^{t}, e^{-t}\right\}$, which is a subspace of $C(-\infty, \infty)$. Here, we will take $B=\left\{e^{t}, e^{-t}\right\}$. What are coordinate vectors for $\sinh (t)$ and $\cosh (t)$ ? Solution: Since $\sinh (t)=\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}$ and $\cosh (t)=\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}$, these vectors are

$$
[\sinh (t)]_{B}=\binom{\frac{1}{2}}{-\frac{1}{2}} \quad \text { and } \quad[\cosh (t)]_{B}=\binom{\frac{1}{2}}{\frac{1}{2}} .
$$

Matrices for linear transformations. The matrix that represents a linear transformation $L: V \rightarrow W$, where $V$ and $W$ are vector spaces with bases $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $C=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$, respectively, is easy to get. We derived it in class, but, since it is not explicitly done in the text, we'll derive it here, too.

We start with the equation $\mathbf{w}=L(\mathbf{v})$. Express $\mathbf{v}$ in terms of the basis $B$ for $V: \mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}$. Next, apply $L$ to both sides of this equation and use the fact that $L$ is linear to get

$$
\begin{aligned}
\mathbf{w}=L(\mathbf{v}) & =L\left(x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}\right) \\
& =x_{1} L\left(\mathbf{v}_{1}\right)+x_{2} L\left(\mathbf{v}_{2}\right)+\cdots+x_{n} L\left(\mathbf{v}_{n}\right)
\end{aligned}
$$

Now, take $C$ coordinates of both sides of $\mathbf{w}=x_{1} L\left(\mathbf{v}_{1}\right)+x_{2} L\left(\mathbf{v}_{2}\right)+\cdots+$ $x_{n} L\left(\mathbf{v}_{n}\right)$ :

$$
\begin{aligned}
{[\mathbf{w}]_{C} } & =\left[x_{1} L\left(\mathbf{v}_{1}\right)+x_{2} L\left(\mathbf{v}_{2}\right)+\cdots+x_{n} L\left(\mathbf{v}_{n}\right)\right]_{C} \\
& =x_{1}\left[L\left(\mathbf{v}_{1}\right)\right]_{C}+x_{2}\left[L\left(\mathbf{v}_{2}\right)\right]_{C}+\cdots+x_{n}\left[L\left(\mathbf{v}_{n}\right)\right]_{C} \\
& =A \mathbf{x}
\end{aligned}
$$

where the columns of $A$ are the coordinate vectors $\left[L\left(\mathbf{v}_{j}\right)\right]_{C}, j=1, \ldots, n$.

A matrix example. Let $V=W=\mathcal{P}_{2}, B=C=\left\{1, x, x^{2}\right\}$, and $L(p)=$ $\left(\left(1-x^{2}\right) p^{\prime}\right)^{\prime}$. To find the matrix $A$ that represents $L$, we first apply $L$ to each of the basis vectors in $B$.

$$
L(1)=0, L(x)=-2 x, \text { and } L\left(x^{2}\right)=2-6 x^{2}
$$

Next, we find the $C$-basis coordinate vectors for each of these. Since $B=C$ here, we have

$$
[0]_{C}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad[-2 x]_{C}=\left(\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right) \quad\left[2-6 x^{2}\right]_{C}=\left(\begin{array}{c}
2 \\
0 \\
-6
\end{array}\right)
$$

and so the natrix that represents $L$ is

$$
A=\left(\begin{array}{ccc}
0 & 0 & 2 \\
0 & -2 & 0 \\
0 & 0 & -6
\end{array}\right)
$$

