The Discrete Fourier Transform

Francis J. Narcowich

October 4, 2005

1 Motivation

We want to numerically approximate coefficients in a Fourier series. The first step is to see how the trapezoidal rule applies when numerically computing the integral $(2 \pi)^{-1} \int_{0}^{2 \pi} F(t) d t$, where $F(t)$ is a continuous, 2π-periodic function. Applying the trapezoidal rule with the stepsize taken to be $h=2 \pi / n$ for some integer $n \geq 1$ results in

$$
(2 \pi)^{-1} \int_{0}^{2 \pi} F(t) d t \approx \frac{1}{n} \sum_{j=0}^{n-1} Y_{j},
$$

where $Y_{j}:=F(h j)=F(2 \pi j / n), j=1 \ldots n-1$. We remark that we made use of $Y_{n}=F(2 \pi)=F(0)=Y_{0}$ in employing the trapezoidal rule to arrive at the right hand side of the equation above. Recall that the coefficients in a Fourier series expansion for a continuous, 2π-periodic function $f(t)$ have the form

$$
c_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \exp (-i k t) d t
$$

We can apply the version of the trapezoidal rule derived above to approximately calculate the c_{k} 's, since $f(t) \exp (-i k t)$ is 2π-periodic. Doing so yields

$$
c_{k} \approx \frac{1}{n} \sum_{j=0}^{n-1} f(2 \pi i j / n) \exp (-2 \pi i j k / n)=\frac{1}{n} \sum_{j=0}^{n-1} y_{j} \bar{w}^{j k},
$$

where $y_{j}=f(2 \pi i j / n)$ and $w=\exp (2 \pi i / n)$. If we replace k by $k+n$, the right hand side of the last equation is unchanged, for $\bar{w}^{n}=\exp (-2 \pi i)=1$. Consequently, only the approximations to c_{k} for $k=0 \ldots n-1$ need be
calculated. Given these approximations, however, one may recover $y_{j}, j=$ $0 \ldots n-1$. To see this, let

$$
\hat{y}_{k}=\sum_{j=0}^{n-1} y_{j} \bar{w}^{j k},
$$

so that $c_{k} \approx \hat{y}_{k} / n$. Multiply both sides by $w^{k \ell}$ and sum over k :

$$
\sum_{k=0}^{n-1} \hat{y}_{k} w^{k \ell}=\sum_{j=0}^{n-1} y_{j} \sum_{k=0}^{n-1} w^{(\ell-j) k} .
$$

The sum over k on the right can be evaluated via the algebraic identity

$$
\sum_{k=0}^{n-1} z^{k}=\left\{\begin{array}{cc}
\frac{z^{n}-1}{z-1} & \text { if } z \neq 1 \\
n & \text { if } z=1
\end{array}\right.
$$

Recalling that $w^{n}=1$, setting $z=w^{j-\ell}$ above, and noting that $w^{j-\ell} \neq 1$ unless $j=\ell$, one gets

$$
\sum_{k=0}^{n-1} w^{(\ell-j) k}= \begin{cases}0 & \text { if } j \neq \ell \\ n & \text { if } j=\ell\end{cases}
$$

Consequently, we find that

$$
\frac{1}{n} \sum_{k=0}^{n-1} \hat{y}_{k} w^{k \ell}=y_{\ell} .
$$

Thus the y 's can be calculated if we know the c 's or \hat{y} 's.

2 Definition

Let \mathcal{S}_{n} be the set of periodic sequences of complex numbers with period n. The set \mathcal{S}_{n} forms a complex vector space under the operations of entry-by-entry addition and entry-by-entry multiplication by a scalar. Let $y=$ $\left\{y_{j}\right\}_{j=-\infty}^{\infty} \in \mathcal{S}_{n}$, so that $y_{j+n}=y_{j}$ for all j. We can associate to each y a new sequence \hat{y} via

$$
\hat{y}_{k}=\sum_{j=0}^{n-1} y_{j} \bar{w}^{j k} .
$$

This is the same formula that we used to find \hat{y}_{k} in $\S 1$; the only differences are that the y_{j} 's are do not necessarily come from a continuous function, and that the index k above is not resricted to $\{0, \ldots, n-1\}$. The sequence \hat{y} is periodic with period n. To see this, note that

$$
\begin{aligned}
\hat{y}_{k+n} & =\sum_{j=0}^{n-1} y_{j} \bar{w}^{j(k+n)}=\sum_{j=0}^{n-1} y_{j} \bar{w}^{j k} \bar{w}^{n j} \\
& =\sum_{j=0}^{n-1} y_{j} \bar{w}^{j k} \quad\left[\bar{w}^{n}=e^{-(2 \pi i / n) n}=1\right] \\
& =\hat{y}_{k}
\end{aligned}
$$

Put another way, $\hat{y} \in \mathcal{S}_{n}$. The mapping $y \in \mathcal{S}_{n} \mapsto \hat{y} \in \mathcal{S}_{n}$ defines the discrete Fourier transform. We will write $\hat{y}=\mathcal{F}[y]$. In addition, the formula derived in $\S 1$ giving y_{j} 's in terms of \hat{y}_{k} 's certainly applies here as well. Thus, after changing the "dummy" indices, one gets this formula for y_{j} 's in terms of \hat{y}_{k} 's:

$$
y_{j}=\frac{1}{n} \sum_{k=0}^{n-1} \hat{y}_{k} w^{j k} .
$$

This is the inversion formula for the DFT. We denote the inverse correspondence $\hat{y} \in \mathcal{S}_{n} \mapsto y \in \mathcal{S}_{n}$ by $y=\mathcal{F}^{-1}[\hat{y}]$.

Both \mathcal{F} and \mathcal{F}^{-1} are linear transformations from \mathcal{S}_{n} to itself. Here are some additional properties that you can verify as exercises.

1. Shifts. If z is the periodic sequence formed from $y \in \mathcal{S}_{n}$ via $z_{j}=y_{j+1}$, then $\mathcal{F}[z]_{k}=w^{k} \mathcal{F}[y]_{k}$.
2. Convolutions. If $y \in \mathcal{S}_{n}$ and $z \in \mathcal{S}_{n}$, then the sequence defined by $[y * z]_{j}:=\sum_{m=0}^{n-1} y_{m} z_{j-m}$ is also in \mathcal{S}_{n}. The sequence $y * z$ is called the convolution of y and z.
3. The Convolution Theorem: $\mathcal{F}[y * z]_{k}=\mathcal{F}[y]_{k} \mathcal{F}[z]_{k}$.

3 An application

Consider the differential equation

$$
u^{\prime \prime}+a u^{\prime}+b u=f(t),
$$

where f is a continuous, 2π-periodic function of t. There is a well-known analytical method for finding the unique periodic solution to this equation (cf. Boyce \& DiPrima, fifth edition, $\S 3.7 .2$ - forced vibrations), provided f is known for all t. On the other hand, if we only know f at the points $t_{j}=j h$, where again $h=2 \pi / n$ for some integer $n \geq 1$, this method is no longer applicable.

Instead of directly trying to work with the differential equation itself, we will work with a discretized version of it. There a many ways of discretizing; the one that we will use here amounts to making these replacements:

$$
\begin{aligned}
u^{\prime}(t) & \longrightarrow \frac{u(t)-u(t-h)}{h} \\
u^{\prime \prime}(t) & \longrightarrow \frac{u(t+h)+u(t-h)-2 u(t)}{h^{2}} .
\end{aligned}
$$

Replacing u^{\prime} and $u^{\prime \prime}$ in the differential equation and setting $t=2 \pi j / n$, we get the following difference equation for the sequence $u_{k}=u(2 \pi k / n)$:

$$
u_{k+1}+\alpha u_{k}+\beta u_{k-1}=h^{2} f_{k}
$$

where $f_{k}=f(2 \pi k / n), \alpha=b h^{2}+a h-2$, and $\beta=1-a h$.
Let $u \in \mathcal{S}_{n}$ be a solution to the difference equation derived above, and let $\hat{u}=\mathcal{F}[u]$. In addition, let $\hat{f}=\mathcal{F}[f]$. From the inversion formula for the DFT, we have

$$
u_{k}=\frac{1}{n} \sum_{j=0}^{n-1} \hat{u}_{j} w^{j k} \quad \text { and } \quad f_{k}=\frac{1}{n} \sum_{j=0}^{n-1} \hat{f}_{j} w^{j k} .
$$

Inserting these in the difference equation then yields, after multiplying by n,

$$
\sum_{j=0}^{n-1} \hat{u}_{j} w^{j(k+1)}+\alpha \sum_{j=0}^{n-1} \hat{u}_{j} w^{j k}+\beta \sum_{j=0}^{n-1} \hat{u}_{j} w^{j(k-1)}=\sum_{j=0}^{n-1} h^{2} \hat{f}_{j} w^{j k} .
$$

Combining terms and doing an algebraic manipulation then results in this:

$$
\sum_{j=0}^{n-1}\left(w^{j}+\alpha+\beta \bar{w}^{j}\right) \hat{u}_{j} w^{j k}=\sum_{j=0}^{n-1} h^{2} \hat{f}_{j} w^{j k}
$$

Taking the inverse DFT of both sides and dividing by $w^{j}+\alpha+\beta \bar{w}^{j}$, which we assume is never 0 , we find that

$$
\hat{u}_{j}=h^{2}\left(w^{j}+\alpha+\beta \bar{w}^{j}\right)^{-1} \hat{f}_{j} .
$$

Thus we have found the DFT of u. Inverting this then recovers u itself. In the next section we will discuss methods for fast computation of the DFT and its inverse.

4 The Fast Fourier Transform

Let us consider the DFT of a periodic sequence y with period $n=2 N$. The \hat{y}_{k} 's are calculated via

$$
\hat{y}_{k}=\sum_{j=0}^{2 N-1} y_{j} \bar{w}^{j k} .
$$

Splitting the sum above into a sum over even and odd integers yields

$$
\begin{aligned}
\hat{y}_{k} & =\sum_{j=0}^{N-1} y_{2 j} \bar{w}^{2 j k}+\sum_{j=0}^{N-1} y_{2 j+1} \bar{w}^{(2 j+1) k} \\
& =\sum_{j=0}^{N-1} y_{2 j} \bar{W}^{j k}+\bar{w}^{k}\left(\sum_{j=0}^{N-1} y_{2 j+1} \bar{W}^{j k}\right),
\end{aligned}
$$

where $W:=\exp (2 \pi i / N)=w^{2}$. We may rewrite this in terms of DFT's with $n \rightarrow N$:

$$
\hat{y}_{k}=\mathcal{F}\left[\left\{y_{0}, y_{2}, \cdots, y_{2 N-2}\right\}\right]_{k}+\bar{w}^{k} \mathcal{F}\left[\left\{y_{1}, y_{3}, \cdots, y_{2 N-1}\right\}\right]_{k}
$$

A further savings is possible. In the last equation, let $k \rightarrow k+N$ and use these facts: (1) $\mathcal{F}\left[y^{\text {even }}\right]$ and $\mathcal{F}\left[y^{\text {odd }}\right]$ both have period N. (2) $\bar{w}^{k+N}=$ $\bar{w}^{k} \exp (-\pi i)=-\bar{w}^{k}$. The result is that for $0 \leq k \leq N-1$ we have

$$
\left\{\begin{array}{cc}
\hat{y}_{k}= & \mathcal{F}\left[\left\{y_{0}, y_{2}, \cdots, y_{2 N-2}\right\}\right]_{k}+\bar{w}^{k} \mathcal{F}\left[\left\{y_{1}, y_{3}, \cdots, y_{2 N-1}\right\}\right]_{k} \\
\hat{y}_{k+N}= & \mathcal{F}\left[\left\{y_{0}, y_{2}, \cdots, y_{2 N-2}\right\}\right]_{k}-\bar{w}^{k} \mathcal{F}\left[\left\{y_{1}, y_{3}, \cdots, y_{2 N-1}\right\}\right]_{k}
\end{array}\right.
$$

Similar formualas can be derived for the inverse DFT; they are:

$$
\left\{\begin{array}{cc}
y_{k}= & \frac{1}{2}\left\{\mathcal{F}^{-1}\left[\left\{\hat{y}_{0}, \hat{y}_{2}, \cdots, \hat{y}_{2 N-2}\right\}\right]_{k}+w^{k} \mathcal{F}^{-1}\left[\left\{\hat{y}_{1}, \hat{y}_{3}, \cdots, \hat{y}_{2 N-1}\right\}\right]_{k}\right\} \\
y_{k+N} & =\frac{1}{2}\left\{\mathcal{F}^{-1}\left[\left\{\hat{y}_{0}, \hat{y}_{2}, \cdots, \hat{y}_{2 N-2}\right\}\right]_{k}-w^{k} \mathcal{F}^{-1}\left[\left\{\hat{y}_{1}, \hat{y}_{3}, \cdots, \hat{y}_{2 N-1}\right\}\right]_{k}\right\} .
\end{array}\right.
$$

(The factor of $\frac{1}{2}$ appears because the inversion formula has a " $1 / n$ " in it.)
What is the computational "cost" of using the formulas above versus ordinary matrix methods, where there are $4 n^{2}$ real multiplications used in the
computation? Set $n=2^{L}$ and let K_{L} be the number of real multiplications required to compute $\mathcal{F}[y]$ by the method above. From the formulas derived above, one sees that to compute $\mathcal{F}[y]$, one needs to compute $\mathcal{F}\left[y^{\mathrm{even}}\right]$ and $\mathcal{F}\left[y^{\text {odd }}\right]$. This takes $2 K_{L-1}$ real multiplications. In addition, one must multiply \bar{w}^{k} and $\mathcal{F}\left[y^{\text {odd }}\right]_{k}$, for $k=0, \ldots, 2^{L-1}-1$, which requires $4 \times 2^{L-1}$ real multiplications. The result is that K_{L} is related to K_{L-1} via

$$
K_{L}=2 K_{L-1}+2^{L+1}
$$

When $L=0, n=2^{0}=1$ and no multiplications are required; thus, $K_{0}=0$. Inserting $L=1$ in the last equation, we find that $K_{1}=1 \times 2^{2}$. Similarly, setting $L=2$ then yields $K_{2}=2 \times 2^{3}$. Similarly, one finds that $K_{3}=3 \times 2^{4}$, $K_{4}=4 \times 2^{5}$, and so on. The general formula is $K_{L}=L \times 2^{L+1}=2 L \times 2^{L}$. Again setting $n=2^{L}$ and noting that $L=\log _{2} n$, we see that the number of real multiplications required is $2 n \log _{2} n$.

To get an idea of how much faster than matrix multiplication this method is, suppose that we want to take the DFT of data with $n=2^{12}=4,096$ points. The conventional method requires $2^{26} \approx 7 \times 10^{7}$ real multiplications. Using the FFT method to get the DFT requires $2 \times 2^{12} \times 12 \approx 10^{5}$ real multiplications, making the FFT roughly 700 times as fast.

We remark that similar algorithms can be obtained when $n=N_{1} N_{2} \cdots N_{m}$, although the fastest one is obtained in the case discussed above. For a discussion of this and related topics, one should consult the references below.

References

[1] J. W. Cooley and J. W. Tukey, "An Algorithm for Machine Computation of Complex Fourier Series," Math. Comp. 19 (1965), 297-301.
[2] Folland, G. B., Fourier analysis and its applications, Wadsworth \& Brooks/Cole, Pacific Grove, CA, 1992.
[3] Marchuk, G. I., Methods of numerical mathematics, Springer-Verlag, Berlin, 1975.
[4] Ralston, A. and Rabinowitz, P. A first course in numerical analysis, McGraw-Hill, New York, 1978.

