
Function Spaces

x1. Inner products and norms. From linear algebra, we recall that an inner product

for a complex vector space V is a function < �; � >: V � V ! C that satis�es the following

properties.

I1. Positivity: < v; v >� 0 for every v 2 V, with < v; v >= 0 if and only if v = 0.

I2. Conjugate symmetry: < v;w > =< w; v > for every v 2 V and w 2 V.
I3. Homogeneity: < cv; w >= c < v; w > for all v; w 2 V and c 2 C .

I4. Additivity: < u+ v; w >=< u;w > + < v;w > for all u; v; w 2 V and c 2 C .

For real vector spaces, conjugate symmetry is replaced by symmetry, < v;w >=< w; v >.

In the complex case, there are two simple, immediate consequences of these properties.

First, from conjugate symmetry and homogeneity, we have < v; cw >= �c < v; w >; second,

from conjugate symmetry and additivity, we get < v; u+w >=< v; u > + < v;w > : The

norm k � k associated with an inner product < �; � > on V is de�ned to be the quantity

kvk := p
< v; v >.

A vector space together with an inner product is called an inner product space. Some

simple examples of such spaces are: (1) C n , the space of n-component column vectors with

complex entries, with the inner product being < v;w >= �wT v =
Pn

j=1
�wjvj ; (2) Pn, the

space of polynomials in x having degree n or less and having complex coe�cients, with

the inner product being < p; q >=
R 1
�1
p(x)q(x)dx; (3) L2[0; 2�], the space of complex-

valued, Lebesgue1 square-integrable functions de�ned on [0; 2�], with the inner product

being < f; g >=
R 2�
0

f(x)g(x)dx. There may be more than one inner product associated

with a vector space. For example, for C 2 one may use

< v;w >= ( �w1 �w2 )

�
2 1

1 3

��
v1
v2

�
;

and for Pn one can also use the inner product < p; q >=
R1
�1

p(x)q(x)e�x
2

dx. We will

leave as exercises the task of showing that the expressions de�ned above are really inner

products. This is quite easy in the case of C n and somewhat more di�cult in the other

cases.

The inner product space that we will be most concerned with is the one that will be

used in connection with signal processing, the space of signals with �nite energy, L2(R).

This comprises all Lebesgue square-integrable functions de�ned on R ; its inner product is

< f; g >=

Z 1

�1

f(t)g(t)dt:

An inner product < �; � > provides a vector space V with a \geometry". The distance

between two vectors v and w in calv is kv�wk, and the two vectors are said to be orthogonal
1The integral that gets used theoretically is the Lebesgue integral. In practice, one thinks

in terms of the Riemann integral.
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if < v;w >= 0. The length of a vector v is kvk, its distance from 0. If kvk = 1, then v is

said to be a unit vector. When V is a real vector space, then one can also de�ne an angle

between two nonzero vectors. Seeing this requires discussing Schwarz's inequality.

Proposition 1.1 (Schwarz's inequality): j < v;w > j � kvk kwk.
Proof: We will �rst look at the case in which w = 0. If w = 0, then by homogeneity

< v; 0 >= 0 < v; 0 >= 0, and by positivity kwk = 0. The inequality is thus satis�ed. If

w 6= 0, then let � be any complex number, and consider

(1:1) F (�) := kv + �wk2

Note that F (�) � 0. Using the properties of a complex inner product, it is easy to express

F (�) this way:

F (�) =kvk2 + �� < v;w > +� < w; v > +j�j2kwk2(1:2)

=kwk2
� kvk2
kwk2 + ��

< v;w >

kwk2 + �
< v;w >

kwk2 + j�j2
�

(Property 2)

=kwk2
 
kvk2
kwk2 �

j < v;w > j2
kwk4 +

�����+
< v;w >

kwk2
����
2
!

(Complete the square.)

Choose � = � < v;w > =kwk2. Since F (�) is always nonngeative, we see that

kvk2
kwk2 �

j < v;w > j2
kwk4 � 0:

Multiply both sides by kwk4 and rearrange terms. Taking the square root of both sides of

the result yields Schwarz's inequality.

When V is a real vector space, Schwarz's inequality allows us to de�ne the angle be-

tween two nonzero vectors. To see this, remove absolute value signs in Schwarz's inequality

(real case!),

�kvk kwk �< v;w >� kvk kwk:
Dividing both sides by kvk kwk, we get that

�1 � < v;w >

kvk kwk � 1:

The term in the middle is thus in the range of the cosine. We therefore de�ne the angle �

between v and w to be

(1:3) � := Arccos

�
< v;w >

kvk kwk

�
:

Schwarz's inequality also has an important consequence for lengths of vectors. In

ordinary Euclidean geometry, the sum of the lengths of any two sides of a triangle exceeds

the length of the third side. The same inequality holds for a general inner product space.
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Corollary 1.2 (The Triangle Inequality):
��kvk � kwk�� � kv + wk � kvk+ kwk.

Proof: We need a special case of a formula that we derived when we proved Schwarz's

inequality; namely,

kv + wk2 = kvk2+ < v;w > + < w; v > +kwk2;
which follows from (1.1) and (1.2) with � = 1. From conjugate symmetry we have that

< w; v >= < v;w >. This and the fact that <fzg = 1

2
(z+�z) allow us to write the previous

equation as

(1:4) kv + wk2 = kvk2 + 2<f< v;w >g+ kwk2;
Now, �j < v;w > j � <f< v;w >g � j < v;w > j. Applying Schwarz's inequality to this

gives

�kvk kwk � <f< v;w >g � kvk kwk:
Combining this with (1.4) results in��kvk�kwk��2 = kvk2�2kvk kwk+kwk2 � kv+wk2 � kvk2+2kvk kwk+kwk2 = (kvk+kwk)2:
Taking square roots then yields the triangle inequality.

In addition to the triangle inequality, the norm k � k coming from the inner product

< �; � > satis�es two other basic properties: positivity , which means that kvk � 0, with

kvk = 0 if and only if v = 0; and positive homegeneity|kcvk = jcj kvk. As we mentioned

earlier, an inner product gives a vector space a geometry that has distances, lengths, and

angles. The part of the geometry that concerns distances and lengths comes directly from

the norm. For many applications, this is the only part that is needed or even possible to

obtain.

In such applications, one has a norm, but no inner product. A norm for a vector

space V is a function k � k : V ! [0;1) that satis�es these three properties:

N1. Positivity: kvk � 0 for all v 2 V, with kvk = 0 if and only if v = 0.

N2. Positive Homogeneity: kcvk = jcj kvk for all v 2 V and c 2 C .

N3. The Triangle Inequality:
��kvk � kwk�� � kv + wk � kvk+ kwk for all v; w 2 V.

A vector space that has a norm k�k is called a normed linear space. An example of a vector

space that has a norm that does not come from an inner product is C[a; b], the space of all

complex valued functions de�ned and continuous on the interval [a; b]; its norm is de�ned

by

kfk = max
a�x�b

jf(x)j:

Even the space C n can be given a norm that does not come from an inner product. Indeed,

it has a whole family of them. Let v = ( v1 � � � vn )
T
be a column vector in C

n . For

1 � p <1, de�ne

kvkp :=
0
@ nX

j=1

jvj jp
1
A
1=p

:

3



This \norms" C
n for all allowed values of p. In particular, the only norm in this family

that can be associated with an inner product is the one for p = 2.

x2. Convergence and completeness. The spaces that we will be using are in�nite

dimensional, and so the approximations that we must deal with involve taking limits of

sequences. Thus, we will be confronted with the same to questions that we addressed in

discussing the Fourier series expansion for the solution to the initial value problem for heat

ow in a ring. After we obtained a formal series solution, we had to ask whether the series

actually de�ned a function and if it did whether the function solved the heat ow problem.

The property that sets the in�nite dimensional spaces that we use here apart from

other spaces is that they are complete. If fvkg1k=1 is a sequence of vectors in a normed

space V, we say that it is convergent if there is a vector v such that for every � > 0 we can

�nd an integer K such that the distance from vk to v is less than � for all k > K; that is,

kv � vkk < � for all k > K:

The di�culty with applying such a de�nition is that one needs to know in advance that

there is such a v. Usually, one only knows enough information to be able to tell that for

large k's, the individual members of the sequence are getting close together. For example,

look at the sequence of rational numbers de�ned recursively via

qk+1 =
1

2
qk +

1

qk
; q1 := 2:

We do not know|at least at the start|whether this sequence converges or, if it does, to

what. We can however show that given � > 0 there is an integer K such jqk � q`j < �

whenever j and k are greater than K. In words, the qk's are getting close together for

large k's. A sequence with this property is called a Cauchy sequence. Is the sequence

convergent to a rational number? The answer is no. If qk ! s as k ! 1, then it is easy

to show that s2 = 2, so s =
p
2, which is an irrational number. On the other hand, if we

ask whether the sequence converges to a real number, the answer is yes, and the number isp
2. The fundamental di�erence between the reals and the rationals is that in the reals all

Cauchy sequences are convergent whereas in the rationals, some are and some are not. The

reals are said to be complete. In general, a normed linear space V in which every Cauchy

sequence is convergent is also said to be complete. A complete normed linear space is a

Banach space, and a complete inner product space is called a Hilbert space. All of the

�nite dimesional spaces that we have worked with are complete. The space of signals with

�nite energy, L2(R), is a Hilbert space if one uses the inner product de�ned earlier in x1,
and C[a; b], the space of complex-valued functions de�ned on the closed interval [a; b] is a

Banach space, again provided that the norm de�ned in x1 is used.

x3. Orthogonal sets. Let V be an inner product space, with the inner product being

< �; � >. A �nite or in�nite set of vectors fv1 ; v2 ; : : :g is said to be orthogonal if none of its

vectors are 0 and if for every pair of distinct vectors|i.e., vj 6= vk|we have < vj ; vk >= 0.

If in addition, the vectors all are normalized so that kvjk = 1, then the set is said to be

orthonormal. The following results are elementary but useful facts; they will be stated

without proof.
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Proposition 3.1: Every orthogonal set is linearly independent.

Proposition 3.2: Every orthogonal set fv1 ; v2 ; v3 ; : : :g can be transformed into an

orthonomal set; namely, fu1 = v1=kv1k; u2 = v2=kv2k; u3 = v3=kv3k; : : :g.
Proposition 3.3: Every linearly independent set can be transformed into an or-

thonomal set having the same span via the Gram-Schmidt process.

For future reference, we will now simply list a number of di�erent sets of orthogonal

functions, together with the inner product space they belong to.

1. (Fourier) feinx=
p
2�g1n=�1, V = L2[��; �] and < f; g >=

R �
��

f(x)g(x)dx.

2. (Fourier) f
r

2

�
sin(nx)g1n=1 , V = L2[0; �] and < f; g >=

R �
0
f(x)g(x)dx.

3. (Legendre) fP`(x)g1`=0, V = L2[�1; 1] and < f; g >=
R 1
�1
f(x)g(x)dx, where

P`(x) =
1

2``!

d`

dx`
(x2 � 1)`; kP`k =

r
2`+ 1

2
:

4. (Hermite) fHk(x)e
�x2=2g1k=0, V = L2(R) and < f; g >=

R1
�1

f(x)g(x)dx, where

Hk(x) = (�1)kex2 d
k

dxk
e�x

2

; kHk(x)e
�x2=2k =

qp
�2kk!

5. (Laguerre) fLk(x)e�x=2g1k=0, V = L2([0;1)] and < f; g >=
R1
0
f(x)g(x)dx,

Lk(x) = ex
dk

dxk
(xke�x); kLk(x)e�x=2k = k!

6. (Haar) f2j=2 (2jx � k)g1j;k=�1 , V = L2(R) and < f; g >=
R1
�1

f(x)g(x)dx,

where  (x) is given by

 (x) :=

8><
>:
1 if 0 � x < 1=2

�1 if 1=2 � x < 1

0 if x < 0 or x � 1:

The �rst two examples are of course the familiar sets used for Fourier series and Fourier

sine series; the functions in both have been normalized so that they form orthonormal

sets. Examples 3-5 all involve orthogonal polynomials that are important in quantum

mechanics: the Legendre polynomials come up in connection with angular momentum;

the Hermite polynomials arise in computing eigenstates for the harmonic oscillator; and,

the Laguerre polynomials are associated with eigenstates of the hyrogen atom. The �nal

example is the set constructed by Haar from scalings and translations of the function  .

These are the Haar wavelets.

Just as we can expand a function in a Fourier series, we can expand a vector in a series

of orthogonal vectors, provided the set contains \enough" vectors. In �nite dimensional
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spaces, \enough" just means that the orthogonal set has as many vectors as the dimension

of the space. With in�nite dimensional spaces, the situation is a little more complicated.

The approach that we take here will give us not only conditions for there to be \enough"

vectors in an orthogonal set, but it will also give us the concept of a least-squares projection.

x4. Least-squares approximation and orthogonal expansions. The term \least-

squares" comes from the kind of minimization done in statistics. It is also used in a

function space setting. Here, we will do the following. Let S = fv1 ; v2 ; : : : ; vn ; : : :g be an
orthogonal set of vectors in an inner product space V. The problem that we want to look

at is the following:

Among all linear combinations from the �nite set SN = fv1 ; v2 ; : : : ; vNg, which
will be closest to a given vector v 2 V|where \close" is measured in terms of the

norm for V?
What we must do to solve this problem is to �nd the coe�cients c1 ; : : : ; cN that minimize

the quantity, kv�PN

j=1
cjvjk2; which is the square of the distance between v and

PN

j=1
cjvj .

First, use the properties of the inner product and the orthogonalty of the vj 's to manipulate

this quantity into the form:

kv �
NX
j=1

cjvjk2 =kvk2 �
NX
j=1

(cj < vj ; v > +�cj < v; vj >) +

NX
j=1

NX
k=1

cj�ck < vj ; vk >

=kvk2 �
NX
j=1

(cj < vj ; v > +�cj < v; vj >) +

NX
j=1

jcj j2kvjk2

=kvk2 �
NX
j=1

(cj< v; vj >+ �cj < v; vj >) +

NX
j=1

jcjj2kvjk2

=kvk2 �
NX
j=1

j < v; vj > j2
kvjk2

+

NX
j=1

kvjk2
����cj � < v; vj >

kvjk2
����
2

;

where the last equation follows from the previous one by completing the square. Second,

obverve that on the right hand side of the last equation, the only term that depends

on the cj 's is the last one, which is nonnegative. Choosing cj =
<v;vj>

kvjk2
thus minimizes

kv �PN

j=1
cjvjk2. We have proved the following.

Theorem 4.1: The distance between v and an arbitrary vector
PN

j=1
cjvj in the span

of fv1 ; v2 ; : : : ; vNg is minimized when cj =
<v;vj>

kvjk2
. Indeed, one always has

(4:1) kv �
NX
j=1

cjvjk2 � kv �
NX
j=1

�
< v; vj >

kvjk2
�
vjk2 = kvk2 �

NX
j=1

j < v; vj > j2
kvjk2

:

The vector
PN

j=1

�
<v;vj>

kvjk2

�
vj is the least squares approximant to v; it is also called

the orthogonal projection of v onto Spanfv1 ; : : : ; vNg. It is worth noting that the vector v
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can be written as the sum

v =

0
@v � NX

j=1

�
< v; vj >

kvjk2
�
vj)

1
A+

0
@ NX

j=1

�
< v; vj >

kvjk2
�
vj

1
A ;

where the vectors in parentheses are orthogonal to one another.

The theorem proved above gives us a general version of an inequality that we met

earlier in connection with mean convergence of Fourier series.

Corollary 4.2 (Bessel's Inequality):

(4:2) kvk2 �
1X
j=1

j < v; vj > j2
kvjk2

:

Proof: From (4.1), we see that

(4:3) kv �
NX
j=1

�
< v; vj >

kvjk2
�
vjk2 = kvk2 �

NX
j=1

j < v; vj > j2
kvjk2

� 0:

Consequently, we have that for all N

kvk2 �
NX
j=1

j < v; vj > j2
kvjk2

Thus the partial sums of the series on the right are bounded from above. Since these

partial sums form a nondecreasing sequnece, they converge, and of course so does the

in�nite series. Taking limits in the last equation then yields Bessel's inequality.

We can now answer the question raised at the end of the last section: When does an

orthogonal set have \enough" vectors in it to be a basis?

Definition 4.3: An orthogonal set fvjg1j=1 is said to be complete2 if every v 2 V
can be expressed as

v =

1X
j=1

�
< v; vj >

kvjk2
�
vj ;

where the series converges in the sense that kv �PN

j=1

�
<v;vj>

kvjk2

�
vjk2 ! 0 as N !1.

Corollary 4.4: An orthogonal set fvjg1j=1 is complete if and only if for every v 2 V
Bessel's inequality is actually an equation; that is,

(4:4) kvk2 =
1X
j=1

j < v; vj > j2
kvjk2

:

2This is not related to an inner product space being complete. There are two distinct

concepts here, both with the same name.
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Proof: Take the limit as N !1 on both sides in equation (4.3). The result is

lim
N!1

kv �
NX
j=1

�
< v; vj >

kvjk2
�
vjk2 =kvk2 � lim

N!1

NX
j=1

j < v; vj > j2
kvjk2

=kvk2 �
1X
j=1

j < v; vj > j2
kvjk2

(4:5)

In view of (4.5), limN!1 kv �PN

j=1

�
<v;vj>

kvjk2

�
vjk2 = 0 for all v if and only if (4.4) holds

for all v; thus, the orthogonal set is complete if and only if (4.4) holds for all v.

Proving that an orthogonal set of functions is complete is generally a task that is

beyond the scope of this work. All of the sets of functions listed in x3 are complete.

5. Subspaces. A subspace of vector space V is a subset of V that is nonempty and that

is a vector space in its own right under the operations + and � from V. The following is a

standard result from linear algebra; it is quite useful in detemining whether a subset is a

subspace.

Propositon 5.1: A subset U � V is a subspace of V if and only if

(a) 0 2 U (U is nonempty).

(b) U is closed under vector addition, \+ ". (u1 2 U ; u2 2 U ) u1 + u2 2 U).
(c) U is closed under scalar mutiplication, \ � ". (c 2 C ; u 2 U ) c � u 2 U .)

It is important to be able to combine subspaces to get new subspaces. Here are three ways

of doing this; we will give a fourth later on in the section. Let U1;U2 be subspaces of a

vector space V.
(i) Intersection. U1 \ U2 is a subspace. (But U1 [ U2 is not a subspace, at least

not in general.)

(ii) Sum. U1 + U2 := fu1 + u2 2 V ju1 2 U1; and u2 2 U2g
(iii) Direct Sum. We will say the sum U1 + U2 is direct if for every v 2 U1 + U2, the

vectors u1; u2 for which v = u1 + u2 are unique. We write U1 � U2.
Before we can discuss the fourth way of combining subspaces to get another subspace, we

need to talk about orthogonal subspaces. This concept plays a crucial role in the theory

and application of wavelets. Again, let U1 and U2 be subspaces of a vector space V, and
also let V have the inner product < �; � >. U1 and U2 are said to be orthogonal if for every

pair u1 2 U1 and u2 2 U2,
hu1; u2i = 0:

When this happens, we write U1 ? U2.
Examples:

1. In V = R3 , let U1 = Span f~i+~j � ~k;~i+~jg and U2 = Span f~i�~jg. Clearly, U1 ? U2.
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2. For Fourier series, if we let

U+ = Span feix; e2ix; : : :g and U� = Span fe�ix; e�2xi; : : :g;

we see that U+ and U� are orthogonal; that is, U+ ? U�.
Proposition 5.2: If U1 and U2 are orthogonal subspaces, then the sum U1 + U2 is

direct. That is,

U1 + U2 = U1 � U2:
Proof: If v is in U1 + U2, then we can decompose v into a sum, v = u1 + u2, with

u1 2 U1 and u2 2 U2. Suppose that we also have v = u01 + u02, again with u01 2 U1 and

u02 2 U2. Equating the two expressions for v gives u1 + u2 = u01 + u02, from which we see

that U1 3 u1 � u01 = u02 � u2 2 U2. Thus, u1 � u01 is in both U1 and U2. Since these spaces
are orthogonal, we have that 0 =< u1�u01; u1�u01 >= ku1�u01k2. From the properties of

inner products, we get u1 � u01 = 0, so u1 = u01. Similar reasoning gives us that u2 = u02.

The decomposition of v into u1 and u2 is therefore unique, and the sum is direct.

Orthogonal complements. We can now discuss the fourth way of combining sub-

spaces. Again, let V be an inner product space, with < �; � > being the inner product.

Keep in mind that V may be a subpsce of some larger space. If we have a subspace U � V,
there are many subspaces for which V = U �W. From the point of view of multiresolution

analysis, the most important is the orthogonal complement of U relative to V.

V?	U := fw 2 V : hw; ui = 0 for all u 2 Ug:

That is, V?	U comprises all the vectors in V that are perpendicular to every vector in U ;
it amounts to a \subtraction" of vector spaces. As we mentioned above, there are many

spaces for which V = U �W. One of them is W = V?	U . Indeed, since this space is very
nearly the only one that we will be concerned with, with will use the slightly simpler V	U
to denote it.

An example. Let V0 be all square integrable functions that are constant in the

intervals [k=; k + 1); k = 0;�1;�2; � � �.

Typical function in V0.
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Also, let V1 be all square integrable functions that are constant in the intervals [k=2; (k+

1)=2); k = 0;�1;�1; � � �.

1

Typical function in V1:
We leave it as an exercise to show that the orhogonal complement of V0 relative to V1 is

the vector space

W0 = V1 	 V0 = fg 2 V1 j g(k) + g((k + 1)=2) = 0 for all k = 0;�1;�2; : : :g

This of course is the 0-scale wavelet space. The function  that generates the orthonormal

wavelet basis f (x� k)gk2Z is the function

 (x) :=

8><
>:
1 if 0 � x < 1=2

�1 if 1=2 � x < 1

0 if x < 0 or x � 1;

which is the Haar wavelet mentioned earlier.
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