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1 Definition of the Inverse

Inverses are defined only for square matrices. Thus, we start with an n×n (square)
matrix A. We say that an n × n matrix B is an inverse for A if and only if
AB = BA = I, where I is the n× n identity matrix.

The reason that we want to consider inverses for matrices is that they enable
us to easily obtain solutions to linear systems of equations. If we want to solve
Ax = b, where x,b are in Rn or Cn (that is, they are real or complex n × 1
columns), and if B is an inverse for A, then consider this chain of equations:

B(Ax) = Bb

(BA︸︷︷︸
I

)x = Bb

Ix = Bb

x = Bb

The point is that if we know an inverse B for A, then the solution to Ax = b is
just x = Bb.

An example of a matrix that has an inverse is A =
(

1 2
1 3

)
. It is easy to

check that
(

3 −2
−1 1

)
is inverse to A. Simply observe that

(
1 2
1 3

) (
3 −2
−1 1

)
=

(
3 −2
−1 1

) (
1 2
1 3

)
=

(
1 0
0 1

)
.

There are two important questions that we want to answer. We will start with
the easier of the two. If a matrix A has an inverse B, can it have another inverse
C 6= B?
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The answer is no. Let B and C be inverses for A. Then, AB = I and CA = I.
Thus, C = CI = C(AB) = (CA)B = IB = B.

The second question is this. Do all nonzero n×n matrices have inverses? The
answer is again no. To see why, suppose that there is a column vector x 6= 0
such that Ax = 0. If such an A had an inverse B, then 0 = B0 = B(Ax) =
(BA)x = Ix = x. But x 6= 0, so we have a contradiction. For example, the matrix(

1 −2
1 −2

)
can’t have an inverse because

(
1 −2
1 −2

) (
2
1

)
=

(
0
0

)
.

There are several conditions equivalent to Ax = 0 having a nontrivial (i.e.,
x 6= 0) solution. The columns of A being linearly dependent is one, and the rank
of A being less than n is another. We discussed these in our previous notes on the
rank of a matrix.

There is still another condition that will prove useful as well. Namely, A is not
row equivalent to the identity matrix I.

Let’s turn this around and look at what happens if A is row equivalent to I. To
say that the n× n matrix A is row equivalent to I is to say that that the reduced
echelon form of A is I, since I is in its reduced echelon form. The identity matrix
I has n leading entries, so rank(A) = n. On the other hand, if rank(A) = n, then
its reduced echelon form has n leading entries, and so must be the identity matrix.
We have thus shown this.

Lemma 1.1 An n× n matrix A is row equivalent to the identity matrix I if and
only if rank(A) = n.

Of course, this also means that A is not row equivalent to I if and only if
rank(A) < n. We now put all the conditions that we found in one place, and add
to the list another, which involves determinants, that we will discuss later.

Proposition 1.2 Let A be an n × n matrix. If any of the following equivalent
conditions hold, then A does not have an inverse:

1. Ax = 0 has a nontrivial solution.

2. The columns of A are linearly dependent.

3. The rank of A is less than n.

4. A is not row equivalent to the identity.

5. det(A) = 0.
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2 Finding the Inverse

Suppose that the n×n matrix A has an inverse B, so AB = BA = I. This means
that none of the five conditions in Proposition 1.2 can hold. In particular, A must
be row equivalent to I.

We want to give a method for finding the inverse B. We can express B in
terms of its columns, B = (x1 x2 · · · xn). Because matrix multiplication is done
by multiplying a row times a column, we see that

AB = (Ax1 Ax2 · · · Axn) = I = (e1 e2 · · · en).

Finding the columns of B – and, hence, B itself – amounts to solving the linear
systems Ax1 = e1, Ax2 = e2, . . . , Axn = en. The key observation is that we can
solve all of these equations at once, because the row operations required to row
reduce [A|b] are the same regardless of what b is. Now, since A ⇔ I, there are
row operations that take A to I. If we apply these row operations to [A | I], then
we will produce [I |B].

Let’s look at some examples. Take A =
(

1 2
1 3

)
, which was the example

we used earlier in section 1. Here is how the algorithm works. First form the
augmented matrix

[A | I] =
(

1 2 1 0
1 3 0 1

)
.

Next, row reduce this matrix:

R2 = R2 −R1 : [A | I] ⇔
(

1 2 1 0
0 1 −1 1

)
R1 = R1 − 2R2 : [A | I] ⇔

(
1 0 3 −2
0 1 −1 1

)
.

Thus, the inverse of A, which we now denote by A−1, is A−1 =
(

3 −2
−1 1

)
Let’s try one that we know does not have an inverse. Let A =

(
1 −2
1 −2

)
.

Form the augmented matrix

[A | I] =
(

1 −2 1 0
1 −2 0 1

)
,

and then row reduce it:

R2 = R2 −R1 : [A | I] ⇔
(

1 −2 1 0
0 0 −1 1

)
.
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The zeroes in the bottom row mean that the two systems Ax1 = e1, Ax2 = e2 are
inconsistent, so no inverse can exist.

Our algorithm will work – i.e., produce a matrix B – under the assumption that
A ⇔ I. The matrix B satisfies AB = I. But to be an inverse, it must also satisfy
BA = I. In the example that we looked at, we can just do the multiplication to
check to see that the second equation holds. In fact, we could do this each time
we used the algorithm, but that would be a nuisance.

It’s nice to know that we don’t have to trouble ourselves. The reason is very
simple. Suppose that we list the row operations required to go from [A|I] to [I|B],
and then apply them in reverse order to [B|I]. This set of row operations will
take I back to A and B back to I. Thus, we will get [B|I] ⇔ [I|A]. Going back
through our analysis of systems of equations, columns, and so on, we see that this
proves that our other equation, BA = I, holds. The final outcome of our analysis
is that A−1 exists if and only if A ⇔ I. Combining this with Lemma 1.1 and
Proposition 1.2 gives the result below.

Theorem 2.1 Let A be an n×n matrix with real or complex entries. The following
statements are equivalent.

1. A−1 exists.

2. The only solution to Ax = 0 is x = 0.

3. The columns of A are linearly independent.

4. rank(A) = n.

5. A is row equivalent to I.

6. det(A) 6= 0.

We close by mentioning that our analysis also shows that (A−1)−1 = A. We
leave it to the reader to supply the details.

4


