\qquad

Test I

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

1. Define the following:
(a) (5 pts.) $C[a, b]$, and its operations of addition and scalar multiplication.
(b) (5 pts.) $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$.
2. (10 pts.) Find the adjacency matrix A for the graph below, and compute the first row of A^{2}. What do these entries tell you about walks of length 2 that start from V_{1} ?

3. (20 pts.) A linear system $A \mathbf{x}=\mathbf{b}$ has the augmented matrix $[A \mid \mathbf{b}]$ given below. Use row reduction to solve the system. Also, identify the leading variables and free variables, and find $N(A)$.

$$
[A \mid b]=\left(\begin{array}{cccc|c}
1 & -2 & 1 & 1 & -2 \\
3 & -6 & 2 & 1 & 1 \\
-2 & 4 & -2 & -2 & 4
\end{array}\right)
$$

4. (10 pts.) Let $S=\left\{\left(x_{1} x_{2} x_{3}\right)^{T} \in \mathbb{R}^{3} \mid x_{1}-2 x_{2}=x_{3}\right\} \subset \mathbb{R}^{3}$. Determine whether or not S is a subspace of \mathbb{R}^{3}.
5. Let $C=\left(\begin{array}{ccc}1 & 1 & 1 \\ 3 & 4 & 1 \\ -2 & -5 & 3\end{array}\right)$.
(a) (15 pts.) Find C^{-1} by row reducing the augmented matrix $[C \mid I]$, keeping careful track of the row operations that you use.
(b) (10 pts.) By inspecting these row operations, give elementary matrices $E, E^{\prime}, E^{\prime \prime}$ such that $E^{\prime \prime} E^{\prime} E C=U$, where U is upper triangular.
(c) (10 pts.) Find $\operatorname{det} C$, using any method.
6. (15 pts.) Do one of the following problems.
(a) Define the term inverse of an $n \times n$ matrix A. Show that if A and B are invertible, then $A B$ is, too, and $(A B)^{-1}=B^{-1} A^{-1}$.
(b) Let A be an $n \times n$ matrix. Show that if $A \mathbf{x}=\mathbf{0}$ has only $\mathbf{x}=\mathbf{0}$ as a solution, then A is row equivalent to the identity.
(c) Let A be an $n \times n$ matrix. Show that if A is row equivalent to the identity, then A is nonsingular.
