Test I

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

- 1. Define the following:
 - (a) (5 pts.) C[a, b], and its operations of addition and scalar multiplication.
 - (b) (5 pts.) Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$.
- 2. (10 pts.) Find the adjacency matrix A for the graph below, and compute the first row of A^2 . What do these entries tell you about walks of length 2 that start from V_1 ?

3. (20 pts.) A linear system $A\mathbf{x} = \mathbf{b}$ has the augmented matrix $[A|\mathbf{b}]$ given below. Use row reduction to solve the system. Also, identify the leading variables and free variables, and find N(A).

$$[A|b] = \begin{pmatrix} 1 & -2 & 1 & 1 & -2 \\ 3 & -6 & 2 & 1 & 1 \\ -2 & 4 & -2 & -2 & 4 \end{pmatrix}$$

- 4. (10 pts.) Let $S = \{(x_1 \ x_2 \ x_3)^T \in \mathbb{R}^3 \ | \ x_1 2x_2 = x_3\} \subset \mathbb{R}^3$. Determine whether or not S is a subspace of \mathbb{R}^3 .
- 5. Let $C = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 4 & 1 \\ -2 & -5 & 3 \end{pmatrix}$.
 - (a) (15 pts.) Find C^{-1} by row reducing the augmented matrix [C|I], keeping careful track of the row operations that you use.
 - (b) (10 pts.) By inspecting these row operations, give elementary matrices E, E', E'' such that E''E'EC = U, where U is upper triangular.
 - (c) (10 pts.) Find $\det C$, using any method.

- 6. (15 pts.) Do <u>one</u> of the following problems.
 - (a) Define the term *inverse* of an $n \times n$ matrix A. Show that if A and B are invertible, then AB is, too, and $(AB)^{-1} = B^{-1}A^{-1}$.
 - (b) Let A be an $n \times n$ matrix. Show that if $A\mathbf{x} = \mathbf{0}$ has only $\mathbf{x} = \mathbf{0}$ as a solution, then A is row equivalent to the identity.
 - (c) Let A be an $n \times n$ matrix. Show that if A is row equivalent to the identity, then A is nonsingular.