Final Examination

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

1. Let $B=\left(\begin{array}{ccccc}1 & -3 & 2 & -2 & 2 \\ -1 & 3 & -2 & 1 & -3 \\ 2 & -6 & 4 & -3 & 5\end{array}\right)$.
(a) (7 pts.$)$ Find bases for the null space, the row space, and the column space of B.
(b) (3 pts.) What are the rank and nullity of B ? What should they add up to? Do they?
2. Consider the matrix $A=\left(\begin{array}{lll}2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2\end{array}\right)$.
(a) (10 pts.) Find the eigenvalues and eigenvectors of A.
(b) (5 pts.) Determine whether A is diagonalizable. If it is, give a diagonal matrix D and an invertible matrix S for which $D=$ $S^{-1} A S$.
3. Let $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be defined by $L(p)=\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d p}{d x}\right)$.
(a) (5 pts.) Show that L is linear.
(b) ($\mathbf{1 0}$ pts.) Take $B=\left\{1, x, x^{2}, x^{3}\right\}$ as a basis for \mathcal{P}_{3}. Find the matrix of L relative to B. From this matrix, read off the eigenvalues of L.
4. (10 pts.) Find the matrix R of a rotation through 30° about the direction $\mathbf{a}=\left(\begin{array}{ccc}\frac{2}{3} & \frac{1}{3} & -\frac{2}{3}\end{array}\right)^{T}$. Leave your final result as a product of matrices.
5. (10 pts.) Find the Fourier series for the function $f(x)=1-2 x$, where $-\pi<x \leq \pi$.
6. (10 pts.) Consider the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$ on continuous functions $C[-1,1]$. Use the Gram-Schmidt process to turn $\left\{1, x, x^{2}\right\}$ into an orthonormal set relative to this inner product.
7. (15 pts.) Use the method of Frobenius to solve order $n=2$ Bessel's equation, $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-2^{2}\right) y=0$.
8. Let V be an inner product space and let $L: V \rightarrow V$ be a linear operator. L is self adjoint if for any pair of vectors $\mathbf{v}, \mathbf{w} \in V$, we have $\langle L(\mathbf{v}), \mathbf{w}\rangle=\langle\mathbf{v}, L(\mathbf{w})\rangle$.
(a) (5 pts.) Show that if L is self adjoint, then the eigenvectors of L corresponding to distinct eigenvalues are orthogonal.
(b) (5 pts.) Let $V=C[-1,1], L(v)=\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d v}{d x}\right),\langle f, g\rangle=$ $\int_{-1}^{1} f(x) g(x) d x$. Show that L is self adjoint. (Hint: integrate by parts twice.)
(c) (5 pts.) Use your answers to problems 3, 8a, and 8 b to explain why the Legendre polynomials are orthogonal relative to $\langle f, g\rangle$.
