Name_____ 1

Final Examination

Instructions: Show all work in your bluebook. Calculators that do linear algebra or calculus are not allowed.

1. Let
$$B = \begin{pmatrix} 1 & -3 & 2 & -2 & 2 \\ -1 & 3 & -2 & 1 & -3 \\ 2 & -6 & 4 & -3 & 5 \end{pmatrix}$$

- (a) (7 pts.) Find bases for the null space, the row space, and the column space of *B*.
- (b) (3 pts.) What are the rank and nullity of *B*? What should they add up to? Do they?

2. Consider the matrix
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
.

- (a) (10 pts.) Find the eigenvalues and eigenvectors of A.
- (b) (5 pts.) Determine whether A is diagonalizable. If it is, give a diagonal matrix D and an invertible matrix S for which $D = S^{-1}AS$.

3. Let
$$L: \mathcal{P}_3 \to \mathcal{P}_3$$
 be defined by $L(p) = \frac{d}{dx} \left((1-x^2) \frac{dp}{dx} \right)$.

- (a) (5 pts.) Show that L is linear.
- (b) (10 pts.) Take $B = \{1, x, x^2, x^3\}$ as a basis for \mathcal{P}_3 . Find the matrix of L relative to B. From this matrix, read off the eigenvalues of L.
- 4. (10 pts.) Find the matrix R of a rotation through 30° about the direction $\mathbf{a} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}^T$. Leave your final result as a product of matrices.
- 5. (10 pts.) Find the Fourier series for the function f(x) = 1 2x, where $-\pi < x \le \pi$.

Please turn over.

- 6. (10 pts.) Consider the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$ on continuous functions C[-1, 1]. Use the Gram-Schmidt process to turn $\{1, x, x^2\}$ into an orthonormal set relative to this inner product.
- 7. (15 pts.) Use the method of Frobenius to solve order n = 2 Bessel's equation, $x^2y'' + xy' + (x^2 2^2)y = 0$.
- 8. Let V be an inner product space and let $L : V \to V$ be a linear operator. L is self adjoint if for any pair of vectors $\mathbf{v}, \mathbf{w} \in V$, we have $\langle L(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, L(\mathbf{w}) \rangle$.
 - (a) (5 pts.) Show that if L is self adjoint, then the eigenvectors of L corresponding to distinct eigenvalues are orthogonal.
 - (b) (5 pts.) Let V = C[-1,1], $L(v) = \frac{d}{dx} \left((1-x^2) \frac{dv}{dx} \right)$, $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$. Show that L is self adjoint. (Hint: integrate by parts twice.)
 - (c) (5 pts.) Use your answers to problems 3, 8a, and 8b to explain why the Legendre polynomials are orthogonal relative to $\langle f, g \rangle$.