Extra Problems - Math 311-503

1. Consider the following operators, spaces, and inner products. In each case, show that the operator is self adjoint.
(a) $L=\frac{d^{2}}{d x^{2}}$

$$
V=\left\{f \in C^{(2)}[2,4] \mid f(2)=0, f(4)=0\right\}
$$

$$
\langle f, g\rangle=\int_{2}^{4} f(x) g(x) d x
$$

(b) $L=\frac{d^{2}}{d x^{2}}-\frac{d}{d x}$
$V=\left\{f \in C^{(2)}[0, \infty) \mid f(0)=0, f\right.$ is "nice" at $\left.\infty\right\}$
$\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x) e^{-x} d x$.
(c) $L=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)$
$V=\left\{f \in C^{(2)}[0,1] \mid f\right.$ is "nice" at $\left.0, f^{\prime}(1)=0\right\}$
$\langle f, g\rangle=\int_{0}^{1} f(r) g(r) r^{2} d r$
2. Use the method of Frobenius in the following differential equations to find the indicial equation, the recurrence relation, and the the first few terms of the series solution.
(a) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$.
(b) $9 x^{2} y^{\prime \prime}+\left(9 x^{2}+2\right) y=0$.
(c) $25 x^{2} y^{\prime \prime}+25 x y^{\prime}+\left(x^{4}-1\right) y=0$

