Quiz - Assignment 5

Instructions: In questions 1 to 3 , state what each space is and describe the operations of vector addition $(+)$ and scalar multiplication (\cdot) corresponding to it.

1. (10 pts.) \mathcal{P}_{n} is the set of all polynomials of degree n or less; that is, $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right\}$. Here are the operations. If $p, q \in$ $\mathcal{P}, p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} q(x)=b_{0}+a_{1} x+\cdots+b_{n} x^{n}$, then $(p+q)(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}$.
If c is a scalar, then $c \cdot p$ is the polynomial
$(c \cdot p)(x)=c a_{0}+c a_{1} x+\cdots+c a_{n} x^{n}$.
2. ($\mathbf{1 0} \mathbf{~ p t s .)} C[a, b]$ is the set of all functions f defined and continuous on the interval $[a, b]$. If $f, g \in C[a, b]$, then $f+g$ is defined by $(f+g)(x)=f(x)+g(x)$
and $c \cdot f$ is defined by
$(c \cdot f)(x)=c f(x)$.
3. (10 pts.) $\mathcal{M}_{m, n}$ is the set of all $m \times n$ matrices. If $A, B \in \mathcal{M}_{m, n}$, then $A+B$ is ordinary matrix addition, and if c is a scalar and $A \in \mathcal{M}_{m, n}$, then $c \cdot A$ is ordinary multiplication of a matrix by a scalar.
4. (10 pts.) Define the term subspace. A nonempty subset \mathcal{V} of a vector space \mathcal{W} is a subspace of \mathcal{W} is \mathcal{V} is closed under the operations of + and $\cdot \operatorname{from} \mathcal{W}$.
5. ($\mathbf{1 0} \mathbf{~ p t s .) ~ L e t ~} S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ be a set of vectors in a vector space \mathcal{V}. Define $\operatorname{span}(S)$. The $\operatorname{span}(S)$ is the set of all linear combinations of the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$. Equivalently,

$$
\operatorname{span}(S)=\left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{m} \mathbf{v}_{m} \mid c_{1}, \cdots, c_{m} \text { are scalars }\right\}
$$

