Extra Problems - Math 311-200

1. Consider the following operators, spaces, and inner products. In each case, show that the operator is self adjoint.
(a) $L=\frac{d^{2}}{d x^{2}}$

$$
V=\left\{f \in C^{(2)}[2,4] \mid f(2)=0, f(4)=0\right\}
$$

$$
\langle f, g\rangle=\int_{2}^{4} f(x) g(x) d x
$$

(b) $L=\frac{d^{2}}{d x^{2}}-\frac{d}{d x}$

$$
V=\left\{f \in C^{(2)}[0, \infty) \mid f(0)=0, f \text { is "nice" at } \infty\right\}
$$

$$
\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x) e^{-x} d x
$$

(c) $L=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)$

$$
\begin{aligned}
& V=\left\{f \in C^{(2)}[0,1] \mid f \text { is "nice" at } 0, f^{\prime}(1)=0\right\} \\
& \langle f, g\rangle=\int_{0}^{1} f(r) g(r) r^{2} d r
\end{aligned}
$$

2. In section 9.6B, the text uses Gauss's theorem to establish Green's first identity,

$$
\int_{R} f \nabla^{2} g d V-\int_{R} g \nabla^{2} f d V=\int_{\partial R}\left(f \frac{\partial g}{\partial \mathbf{n}}-g \frac{\partial f}{\partial \mathbf{n}}\right) d \sigma
$$

Define the inner product

$$
\langle f, g\rangle=\int_{R} f(\mathbf{x}) g(\mathbf{x}) d V
$$

and use this identity to show that $L=\nabla^{2}$ is self adjoint on $V=$ $\left\{f \in C^{(2)}(R) \mid f(\mathbf{x})=0, \mathbf{x} \in \partial R\right\}$, which, in words, consists of all twice continuously differentiable functions on R that vanish on the boundary of $R, \partial R$. This space comes up in a heat flow problem for material confined to a region R and kept in a heat bath at 0°.
3. Use the method of Frobenius in the following differential equations to find the indicial equation, the recurrence relation, and the the first few terms of the series solution.
(a) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$.
(b) $9 x^{2} y^{\prime \prime}+\left(9 x^{2}+2\right) y=0$.
(c) $25 x^{2} y^{\prime \prime}+25 x y^{\prime}+\left(x^{4}-1\right) y=0$

